A positive integer N has its first, third and fifth digits equal and its second, fourth and sixth digits equal. In other words, when written in the usual decimal system it has the form xyxyxy, where x and y are the digits. Show that N cannot be a perfect power, i.e., N cannot equal , where a and b are positive integers with b > 1.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Hint: factor xyxyxy, think about the factors of 10101.
10101=13x37x3x7. xyxyxy=10101(10x+y). So, in order for it to be a perfect square, 10x+y>=10101. But 10x+y<100. So, it's not possible.