An ISI 2010 Problem

Let a1>a2>.......>ara_1>a_2>.......>a_r be positive real numbers. Compute limn(a1n+a2n+........+arn)1n\lim_{n \to \infty} ({a_1}^n +{a_2}^n + ........+ {a_r}^n)^{\frac{1}{n}}.

[Please be kind enough to write the solution.]

#NumberTheory #AlgebraicOperations

Note by Maharnab Mitra
7 years, 1 month ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Let L=limx(a1x+a2x++arx)1/x.L = \lim_{x \to \infty} (a_1^x + a_2^x + \dots + a_r^x)^{1/x}. Then logL=loglimx(a1x+a2x++arx)1/x=limxlog(a1x+a2x++arx)1/x=limxlog(a1x+a2x++arx)x. \begin{aligned} \log L &= \log \lim_{x \to \infty} (a_1^x + a_2^x + \dots + a_r^x)^{1/x} \\ &= \lim_{x \to \infty} \log (a_1^x + a_2^x + \dots + a_r^x)^{1/x} \\ &= \lim_{x \to \infty} \frac{\log (a_1^x + a_2^x + \dots + a_r^x)}{x}. \end{aligned}

By L'Hopital's Rule, limxlog(a1x+a2x++arx)x=limxddxlog(a1x+a2x++arx)ddxx=limxa1xloga1+a2xloga2++arxlogara1x+a2x++arx. \begin{aligned} \lim_{x \to \infty} \frac{\log (a_1^x + a_2^x + \dots + a_r^x)}{x} &= \lim_{x \to \infty} \frac{\frac{d}{dx} \log (a_1^x + a_2^x + \dots + a_r^x)}{\frac{d}{dx} x} \\ &= \lim_{x \to \infty} \frac{a_1^x \log a_1 + a_2^x \log a_2 + \dots + a_r^x \log a_r}{a_1^x + a_2^x + \dots + a_r^x}. \end{aligned}

Then limxa1xloga1+a2xloga2++arxlogara1x+a2x++arx=limx(a1xloga1+a2xloga2++arxlogar)/a1x(a1x+a2x++arx)/a1x=limxloga1+(a2/a1)xloga2++(ar/a1)xlogar1+(a2/a1)x++(ar/a1)x=loga1. \begin{aligned} \lim_{x \to \infty} \frac{a_1^x \log a_1 + a_2^x \log a_2 + \dots + a_r^x \log a_r}{a_1^x + a_2^x + \dots + a_r^x} &= \lim_{x \to \infty} \frac{(a_1^x \log a_1 + a_2^x \log a_2 + \dots + a_r^x \log a_r)/a_1^x}{(a_1^x + a_2^x + \dots + a_r^x)/a_1^x} \\ &= \lim_{x \to \infty} \frac{\log a_1 + (a_2/a_1)^x \log a_2 + \dots + (a_r/a_1)^x \log a_r}{1 + (a_2/a_1)^x + \dots + (a_r/a_1)^x} \\ &= \log a_1. \end{aligned}

Therefore, L=a1L = a_1.

Jon Haussmann - 7 years, 1 month ago

Log in to reply

Thanks :)

Maharnab Mitra - 7 years, 1 month ago

Take a1 to power n common from bracket..it become lim(a1)[1 + (a2/a1)^n +....]^1/n .

It all terms terms become zero ..so answer will come to ...a1.

Aman Chaudhary - 7 years, 1 month ago

Log in to reply

Not immediately true. The limiting value of 00 0 ^ 0 depends on what path you take.

Edit: Ooops, I spoke too quickly. The power needs to be logarithmic. Use f(x)=x,g(x)=1logx f(x) = x, g(x) = \frac{ 1} {\log x} , then we have f(x)g(x)=e f(x) ^ { g(x) } = e .

Calvin Lin Staff - 7 years, 1 month ago

Log in to reply

limx0xx0.2=elimx0x15ln(x)\lim_{x \to 0} x^{x^0.2} = e^{\lim_{x \to 0} x^{\frac{1}{5}} ln (x)}

Now, limx0x15ln(x)=limx0ln(x)x15\lim_{x \to 0} x^{\frac{1}{5}} ln (x)= \lim_{x \to 0} \frac{ ln (x)}{x^{\frac{-1}{5}}} =limx0x155=\lim_{x \to 0} \frac{-x^{\frac{1}{5}}}{5} (using LHospitalL'Hospital's rule) which goes to 0. Thus, the required limit is e0=1e^0=1

Maharnab Mitra - 7 years, 1 month ago

Log in to reply

@Maharnab Mitra Sorry, updated.

Calvin Lin Staff - 7 years, 1 month ago

Log in to reply

@Calvin Lin Sir, then what should the correct answer (or rather solution) to the problem be?

Maharnab Mitra - 7 years, 1 month ago

Multiply and divide by a1 and proceed. Ans: a1

Pritiranjan Dwibedy - 6 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...