Let a1>a2>.......>ara_1>a_2>.......>a_ra1>a2>.......>ar be positive real numbers. Compute limn→∞(a1n+a2n+........+arn)1n\lim_{n \to \infty} ({a_1}^n +{a_2}^n + ........+ {a_r}^n)^{\frac{1}{n}}limn→∞(a1n+a2n+........+arn)n1.
[Please be kind enough to write the solution.]
Note by Maharnab Mitra 7 years, 1 month ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Let L=limx→∞(a1x+a2x+⋯+arx)1/x.L = \lim_{x \to \infty} (a_1^x + a_2^x + \dots + a_r^x)^{1/x}.L=x→∞lim(a1x+a2x+⋯+arx)1/x. Then logL=loglimx→∞(a1x+a2x+⋯+arx)1/x=limx→∞log(a1x+a2x+⋯+arx)1/x=limx→∞log(a1x+a2x+⋯+arx)x. \begin{aligned} \log L &= \log \lim_{x \to \infty} (a_1^x + a_2^x + \dots + a_r^x)^{1/x} \\ &= \lim_{x \to \infty} \log (a_1^x + a_2^x + \dots + a_r^x)^{1/x} \\ &= \lim_{x \to \infty} \frac{\log (a_1^x + a_2^x + \dots + a_r^x)}{x}. \end{aligned} logL=logx→∞lim(a1x+a2x+⋯+arx)1/x=x→∞limlog(a1x+a2x+⋯+arx)1/x=x→∞limxlog(a1x+a2x+⋯+arx).
By L'Hopital's Rule, limx→∞log(a1x+a2x+⋯+arx)x=limx→∞ddxlog(a1x+a2x+⋯+arx)ddxx=limx→∞a1xloga1+a2xloga2+⋯+arxlogara1x+a2x+⋯+arx. \begin{aligned} \lim_{x \to \infty} \frac{\log (a_1^x + a_2^x + \dots + a_r^x)}{x} &= \lim_{x \to \infty} \frac{\frac{d}{dx} \log (a_1^x + a_2^x + \dots + a_r^x)}{\frac{d}{dx} x} \\ &= \lim_{x \to \infty} \frac{a_1^x \log a_1 + a_2^x \log a_2 + \dots + a_r^x \log a_r}{a_1^x + a_2^x + \dots + a_r^x}. \end{aligned} x→∞limxlog(a1x+a2x+⋯+arx)=x→∞limdxdxdxdlog(a1x+a2x+⋯+arx)=x→∞lima1x+a2x+⋯+arxa1xloga1+a2xloga2+⋯+arxlogar.
Then limx→∞a1xloga1+a2xloga2+⋯+arxlogara1x+a2x+⋯+arx=limx→∞(a1xloga1+a2xloga2+⋯+arxlogar)/a1x(a1x+a2x+⋯+arx)/a1x=limx→∞loga1+(a2/a1)xloga2+⋯+(ar/a1)xlogar1+(a2/a1)x+⋯+(ar/a1)x=loga1. \begin{aligned} \lim_{x \to \infty} \frac{a_1^x \log a_1 + a_2^x \log a_2 + \dots + a_r^x \log a_r}{a_1^x + a_2^x + \dots + a_r^x} &= \lim_{x \to \infty} \frac{(a_1^x \log a_1 + a_2^x \log a_2 + \dots + a_r^x \log a_r)/a_1^x}{(a_1^x + a_2^x + \dots + a_r^x)/a_1^x} \\ &= \lim_{x \to \infty} \frac{\log a_1 + (a_2/a_1)^x \log a_2 + \dots + (a_r/a_1)^x \log a_r}{1 + (a_2/a_1)^x + \dots + (a_r/a_1)^x} \\ &= \log a_1. \end{aligned} x→∞lima1x+a2x+⋯+arxa1xloga1+a2xloga2+⋯+arxlogar=x→∞lim(a1x+a2x+⋯+arx)/a1x(a1xloga1+a2xloga2+⋯+arxlogar)/a1x=x→∞lim1+(a2/a1)x+⋯+(ar/a1)xloga1+(a2/a1)xloga2+⋯+(ar/a1)xlogar=loga1.
Therefore, L=a1L = a_1L=a1.
Log in to reply
Thanks :)
Take a1 to power n common from bracket..it become lim(a1)[1 + (a2/a1)^n +....]^1/n .
It all terms terms become zero ..so answer will come to ...a1.
Not immediately true. The limiting value of 00 0 ^ 0 00 depends on what path you take.
Edit: Ooops, I spoke too quickly. The power needs to be logarithmic. Use f(x)=x,g(x)=1logx f(x) = x, g(x) = \frac{ 1} {\log x} f(x)=x,g(x)=logx1, then we have f(x)g(x)=e f(x) ^ { g(x) } = e f(x)g(x)=e.
limx→0xx0.2=elimx→0x15ln(x)\lim_{x \to 0} x^{x^0.2} = e^{\lim_{x \to 0} x^{\frac{1}{5}} ln (x)}limx→0xx0.2=elimx→0x51ln(x)
Now, limx→0x15ln(x)=limx→0ln(x)x−15\lim_{x \to 0} x^{\frac{1}{5}} ln (x)= \lim_{x \to 0} \frac{ ln (x)}{x^{\frac{-1}{5}}}limx→0x51ln(x)=limx→0x5−1ln(x) =limx→0−x155=\lim_{x \to 0} \frac{-x^{\frac{1}{5}}}{5}=limx→05−x51 (using L′HospitalL'HospitalL′Hospital's rule) which goes to 0. Thus, the required limit is e0=1e^0=1e0=1
@Maharnab Mitra – Sorry, updated.
@Calvin Lin – Sir, then what should the correct answer (or rather solution) to the problem be?
Multiply and divide by a1 and proceed. Ans: a1
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Let L=x→∞lim(a1x+a2x+⋯+arx)1/x. Then logL=logx→∞lim(a1x+a2x+⋯+arx)1/x=x→∞limlog(a1x+a2x+⋯+arx)1/x=x→∞limxlog(a1x+a2x+⋯+arx).
By L'Hopital's Rule, x→∞limxlog(a1x+a2x+⋯+arx)=x→∞limdxdxdxdlog(a1x+a2x+⋯+arx)=x→∞lima1x+a2x+⋯+arxa1xloga1+a2xloga2+⋯+arxlogar.
Then x→∞lima1x+a2x+⋯+arxa1xloga1+a2xloga2+⋯+arxlogar=x→∞lim(a1x+a2x+⋯+arx)/a1x(a1xloga1+a2xloga2+⋯+arxlogar)/a1x=x→∞lim1+(a2/a1)x+⋯+(ar/a1)xloga1+(a2/a1)xloga2+⋯+(ar/a1)xlogar=loga1.
Therefore, L=a1.
Log in to reply
Thanks :)
Take a1 to power n common from bracket..it become lim(a1)[1 + (a2/a1)^n +....]^1/n .
It all terms terms become zero ..so answer will come to ...a1.
Log in to reply
Not immediately true. The limiting value of 00 depends on what path you take.
Edit: Ooops, I spoke too quickly. The power needs to be logarithmic. Use f(x)=x,g(x)=logx1, then we have f(x)g(x)=e.
Log in to reply
limx→0xx0.2=elimx→0x51ln(x)
Now, limx→0x51ln(x)=limx→0x5−1ln(x) =limx→05−x51 (using L′Hospital's rule) which goes to 0. Thus, the required limit is e0=1
Log in to reply
Log in to reply
Multiply and divide by a1 and proceed. Ans: a1