A family consists of a grandfather,6 sons and daughters and 4 grandchildren. They are to be seated in a row for the dinner. The grand children wish to occupy the two seats at each end and the grandfather refuses to have a grand children on either side of him. Determine the number of ways in which they can be seated for the dinner.
Please give explanation for this...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
86400 is one answer received. Do anyone oppose the solution of Varnika?
let us mark the seats as 1 2 3 4 5 6 7 8 9 10 11 children can sit on 1,2,10,11 in 4! then grandfather cannot sit on 3 and 9 so,he can arrange himself in 5 ways(5 permutation 1)and the left people can be arranged in 6!..so,total ways=4!56!=245720=86400
Log in to reply
great!! looks good. Thanks for your try...
The number of ways to arrange the grand children at each end is 4!=4×3×2×1=24.So the grandfather can sit in one of the 5 seats in the middle so there are 5 ways to seat the grandfather.Then the sons and daughters can be seated in 6!=6×5×4×3×2×1=720.So the answer is 24×5×720=86400.