"Ancient Greek Geometry"--interactive puzzle

Main post link -> http://sciencevsmagic.net/geo/

I found this fun interactive Javascript game/puzzle that teaches concepts related to straightedge and compass constructions, and I thought I'd share it here. It's deceptively simple, and quite challenging. The best part about it is that because your constructions are encoded as an HTML link, you can share your solutions with others simply by copying the web address. Can you construct a regular pentagon in 15 moves or less? And can you construct other regular polygons that are not shown in the challenges, like the 15-gon and 17-gon?

http://sciencevsmagic.net/geo/

Also, check out the author's website for other interesting mathematical "toys."

#Geometry #LearningResources #CoolLinks #Math

Note by Hero P.
7 years, 11 months ago

No vote yet
34 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Try finding efficient constructions for all constructable regular polygons of 20 or fewer sides: these are n{3,4,5,6,8,10,12,15,16,17,20}. n \in \{ 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20 \}. Some of the ones I've devised use some interesting tricks, because in practice, an actual compass would permit the transfer the length of a given line segment onto any other line in a single move.

My record for constructing the regular heptadecagon (17-gon) is 59 moves. Can anyone beat it?

hero p. - 7 years, 11 months ago

Nice Construction Puzzle . Thanks ! Found construction for n-gon with n = 3,4,5,6,8,10,12,16,20 .

for 15-gon , In wikipedia nice construction given ( pentadecagon ) . Note that by this method (to draw angle 36 ) , we can draw 20-gon, decagon and pentagon in less moves then in my method .

Still did not found method for 17-gon .

Triangle-i ,
Triangle-ii ,

Square ,

Pentagon ,

Hexagon ,

Octagon ,

Decagon ,

12-gon ,

16-gon ,

20-gon ,

Circle Packing:- 2-i , 2-ii ,

3 ,

4 ,

7 .

Jay Joshi - 7 years, 11 months ago

Log in to reply

To give you an idea of more efficient constructions, here is my 16-gon using 31 moves. Note that extending a previously drawn line does not cost any additional moves.

One should also try to verify the correctness of the construction; this should be easy for most regular polygons.

hero p. - 7 years, 11 months ago

Log in to reply

_ Interesting and Creative ! _

I saw that in your construction while making degree 22.5 , you were not only   try to make angle at one place then paste it at other places , but construct  same angle in many places together ,which leads to less moves .

Here is my method to make 36 36 ^ \circ which used in making four constructions of n-gon . constuction of degree 36

_Curious to see idea of making 17-gon . _

Jay Joshi - 7 years, 11 months ago

Thank you.

Muralidhar Kamidi - 7 years, 11 months ago

This is so cool!

Bob Krueger - 7 years, 11 months ago

Thanks Hero! It's really great!!!

Piyal De - 7 years, 11 months ago

Thanks, this game is awesome!!

Michael Tang - 7 years, 11 months ago

This is awesome! Thanks!

Kee Wei Lee - 7 years, 11 months ago

You cannot copy lengths with this, can you? I think that is allowed with construction? (by simply keeping the pair of compasses in that position)

Tim Vermeulen - 7 years, 11 months ago

Log in to reply

You are correct; the rules do not allow direct copying of lengths--you must find some other way to do it.

hero p. - 7 years, 11 months ago

Nice Links

Remel Pangemanan - 7 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...