Suppose,you have a ribbon that can be tightly wrapped around the equatorial circumference of the earth. Now you increase its length by 1 metre. Now your job is to calculate how much high equally it can be raised all around the circumference of the earth.
I WANT THE EXACT ANSWER.BEST OF LUCK!!!
CLUE: The answer is a surprising one.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
ΔL=2πΔr, where Δr is the desired uniform increase in height and ΔL is the increase in ribbon length. This is the same equation to be used in the other ribbon problem.
I used to ponder this question while running around a racetrack, intrigued how the extra distance between tracks is independent of the radius of curvature. A better question is to ask, at what latitude relative to the equator will the height increase by 1 meter for a stretched ribbon at constant length?
Log in to reply
what ans. u got?
Log in to reply
Give me any planet or sphere in the universe and ΔL=1 m, and the height will be Δr=2π1 m.
Log in to reply
1/2 pie
Log in to reply
1/2 pie