AprblmInTrigo Soln:

The Problem: AprblmInTrigo

\( \sin\alpha \sec ^{ 2 }{ \frac{\alpha }{2} } =l ...(A)\) and \( \left( 1+\tan { \frac{\alpha }{2} } -\sec { \frac{\alpha }{2} } \right) \left( 1+\tan { \frac{\alpha }{2} } +\sec { \frac{\alpha }{2} } \right) =Cl ...(B)\)

The question simply asks for expressing (B) in terms of (A).\ i.e in terms like cosθ\cos { \theta } and sinθ \sin { \theta } . Since we now know our direction, lets sail mate.

(1+tanα2secα2)(1+tanα+secα2)=(1+tanα2)2sec2α2=1+tan2α2+2tanα/2sec2α/2=[cos2α2+tan2α2cos2α2+2tanα2cos2α21]/[cos2α2]=[(cos2α2+sin2α2)+2sinα2cosα21]/[cos2α2]=[2sinα2cosα2]/[cos2α2]=sinαsec2α2=l \left( 1+\tan { \frac{\alpha }{2} } -\sec { \frac{\alpha }{2} } \right) \left( 1+\tan { \alpha } +\sec { \frac{\alpha }{2} } \right) ={ \left( 1+\tan { \frac{\alpha }{2} } \right) }^{ 2 }-\sec ^{ 2 }{ \frac{\alpha }{2} } \\ =1+\tan ^{ 2 }{ \frac{\alpha}{2} } +2\tan { \alpha } /2-\sec ^{ 2 }{ \alpha } /2\\ =\left[ \cos ^{ 2 }{ \frac{\alpha}{2} } +\tan ^{ 2 }{ \frac{\alpha}{2} } \cos ^{ 2 }{ \frac{\alpha}{2} } +2\tan { \frac{\alpha}{2} } \cos ^{ 2 }{ \frac{\alpha}{2} } -1 \right] /\left[ \cos ^{ 2 }{ \frac{\alpha}{2} } \right] \\ =\left[ \left( \cos ^{ 2 }{ \frac{\alpha}{2} } +\sin ^{ 2 }{ \frac{\alpha}{2} } \right) +2\sin { \frac{\alpha}{2} } \cos { \frac{\alpha}{2} } -1 \right] /\left[ \cos ^{ 2 }{ \frac{\alpha}{2} } \right] \\= \left[ 2\sin { \frac{\alpha}{2} } \cos { \frac{\alpha}{2} } \right] /\left[ \cos ^{ 2 }{ \frac{\alpha}{2} } \right] =\sin { \alpha \sec ^{ 2 }{ \frac{\alpha}{2} } } =l

Hence the answer is 11

#Trigonometry

Note by Soumo Mukherjee
6 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Please don't use so weird formatting. Only give the \ ( .... \ ) wrapping around the Math Terms and not around the words.

Aditya Raut - 6 years, 8 months ago

Log in to reply

Thanx buddy! Nxt time I will.

Soumo Mukherjee - 6 years, 8 months ago

Log in to reply

I've edited this, take a note of the changes and use what you understand in future.

Aditya Raut - 6 years, 8 months ago

Log in to reply

@Aditya Raut yep.thanx again.

Soumo Mukherjee - 6 years, 8 months ago
×

Problem Loading...

Note Loading...

Set Loading...