arithmetic progression

Can anyone have a solution about how to find common elements in two arithmetic progressions?? E.g. First seq is 2,17,32,47,.... Second seq is 67,147,227,... First common term is 227. So how to find these common terms in any given sequences?

#ArithmeticProgression(AP)

Note by Milind Joshi
6 years, 12 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Find the n'th term of both the Progressions and equate them as follows:

Let the NUMBER of term which is same is 'n' in the first sequence and 'N' in the second sequence. Therefore, since it is same in both the sequences,

                                            2 + (n-1)*15  =  67 + (N-1)*80
                                     = > 2 + 15n - 15  =  67 + 80N - 80
                                     =>  15n - 13 = 80N - 13
                                     =>  3n = 16N

Since, we need to find the first common term, so the values of n and N for which it is true is 16 and 3 respectively. Therefore, n = 16...Putting it in 2 + (n-1)*15, we get the common term as 227...Volaa!!!!

A Former Brilliant Member - 6 years, 12 months ago

Log in to reply

Ohh....excellent....gr8... Further we can find whole sequence also....it will be also an ap...we can find common difference by taking lcm of the differences of the two sequences....it means here lcm(d1,d2)=lcm(15,80)=240....so the sequence will be 227,467,707,...and so on...i knew how to find difference but i didnt know how to find first term....thnx..

Milind Joshi - 6 years, 12 months ago
×

Problem Loading...

Note Loading...

Set Loading...