Ashish's \(\LaTeX\) playground

This is my note for testingLaTeX\large \text {This is my note for testing} \LaTeX :P:P

A special thanks to\large \text {A special thanks to} Pi Han Goh\large \color{#D61F06}{\text {Pi Han Goh}} and\large \text {and} Andrew Ellinor\large \color{#3D99F6}{\text {Andrew Ellinor}} and\large \text {and} Nihar Mahajan\large \color{#20A900}{\text {Nihar Mahajan}}for the success of this note.\large \text {for the success of this note.} x=2+5=7\begin{aligned} \begin{array}{c}x & = 2+5 \\ & = 7 \end {array} \end{aligned}

(1001 )\begin {pmatrix} 1 & & 0\\ 0 & & 1\ \end {pmatrix} × (1001 )\begin {pmatrix} 1 & & 0\\ 0 & & 1\ \end {pmatrix} = (1+00+00+00+1 )\begin {pmatrix} 1+0 & & 0+0\\ 0+0 & & 0+1\ \end {pmatrix} = (1001 )\begin {pmatrix} 1 & & 0\\ 0 & & 1\ \end {pmatrix}

My name is Ashish\large{\color{magenta}{\text{My name is Ashish}}}


x+7x=24    8x=24    x=248x=3\begin{aligned} & x + 7x & = 24\\ \implies & 8x & =24\\ \implies & x & = \dfrac {24}{8}\\ \therefore & x & = \boxed{3} \end{aligned}


NaX2COX3+HX2ONaOH+HX2O+COX2\ce {{Na}_2CO_3 + H_2O -> NaOH + H_2O + CO_2}


()\begin{pmatrix} \nearrow \circ \nwarrow & \approx & \nearrow \circ \nwarrow\\ & \bigcup & \\ & \nearrow \searrow \nearrow \searrow \nearrow \searrow & \\& \smile & \end{pmatrix}


0 55 \encloselongdiv3 73 52 \LARGE{ \begin{array}{rll} \phantom{0}\ \boxed{{5}} && \\[-2pt] \boxed{{5}}\ \enclose{longdiv}{\boxed{{3}} \ \boxed{7}}\kern-.2ex \\[-2pt] \underline{\boxed{{3}} \ \boxed{{5}}} && \\[-2pt] \boxed{{2}} \end{array} }


x +1x +1\encloselongdivx2 +2x +1x2 +x 0 0 000 x +1x +10 0 0 \LARGE{ \begin{array}{rll} \boxed{{x}}\ + \boxed{{1}} && \\[-2pt] \boxed{{x}}\ + \boxed{{1}} \enclose{longdiv}{\boxed{{x^2}}\ + \boxed{{2x}}\ + \boxed{{1}}}\kern-.2ex \\[-2pt] \underline{\boxed{{x^2}}\ + \boxed{{x}}\ \phantom{0}\ \phantom{0}\ \phantom{0}} \phantom{0}\\[-2pt] \phantom{0}\ \boxed{{x}}\ + \boxed{{1}}\kern-.2ex \\[-2pt] \underline{\boxed{{x}}\ + \boxed{{1}}} && \\[-2pt] \phantom{0}\ \phantom{0}\ \boxed{{0}} \end{array} }


\begin{aligned} \begin {array} x & \dfrac{29 \times 7}{116}\\ = & \dfrac{{{\cancel {29}}} \times 7}{{\require {cancel}{\cancel {116}}} 4}\\ = & \boxed {\dfrac{7}{4}} \end {array} \end{aligned}


I ♡ Brilliant\huge \text{I ♡ Brilliant}


Here are some symbols:¡¿¤°\large \text{Here are some symbols} :- ♤■□●◇◆•○♡♧¡¿《》¤°♧▪


1020=\requirecancel10202=12\begin{aligned} \dfrac {10}{20} & =\require {cancel}{\dfrac {\xcancel{10}}{\xcancel{20}2}}\\ & = \dfrac {1}{2} \end{aligned}


BRILLIANT{\Huge {\color{#D61F06}{B}}}{\huge{\color{#3D99F6}{R}}}{\LARGE {\color{#CEBB00}{I}}}{\Large{\color{#20A900}{L}}}{\large{\color{magenta}{L}}}{\Large{\color{#69047E}{I}}}{\LARGE{\color{#333333}{A}}}{\huge{\color{#E81990}{N}}}{\Huge{\color{#624F41}{T}}}


5+4=8+1=97+2=8+1=9\begin{aligned} 5+4 & = 8 +1\\ & = 9 \\ \\ 7+2 & = 8+1\\ & = 9 \end{aligned}


x2x3x4x5x5x4x3x2xxxxx2x3x4x5=xx5+x11+2424x15\Huge \sqrt[\sqrt[x^5]{\sqrt[x^4]{\sqrt[x^3]{\sqrt[x^2]{\sqrt[x]{x}}}}}]{\sqrt[5\sqrt[x]{\sqrt[2x]{\sqrt[3x]{\sqrt[4x]{x}}}}]{\sqrt[5x]{\sqrt[4x]{\sqrt[3x]{\sqrt[2x]{x}}}}}} = x^{x^{5 + \tfrac{x^{11} + 24}{24x^{15}}}}

Find the real value of xx satisfying the real equation above.

Note\text{Note}:- Here x{1,0,1}x \neq \{-1 , 0 , 1\}


4x4(4x4x)x44\sqrt[\sqrt[4]{{\left(\sqrt[x]{4x^4}\right)}^{x^4}}]{\sqrt[4]{\sqrt[x]{4}}} = 417xx314^{-17x^{-x^3 - 1}}

(4x4x)x44\sqrt[4]{{\left(\sqrt[x]{4x^4}\right)}^{x^4}}

4x41(4x4x)x44{\sqrt[4]{\sqrt[x]{4}}}^{\tfrac{1}{\sqrt[4]{{\left(\sqrt[x]{4x^4}\right)}^{x^4}}}}

log8log4log216=log8log44=log8log44=log81=log81=0\log_8 \log_4 \color{#3D99F6}{\log_2 16}\\ = \log_8 \log_4 \color{#3D99F6}{4}\\ = \log_8 \color{#D61F06}{\log_4 4}\\ = \log_8 \color{#D61F06}{1}\\ = \color{#20A900}{\log_8 1}\\ = \color{#69047E}{\boxed{0}}

logba=logalogb\log_{\color{#3D99F6}{b}} \color{#D61F06}{a} = \dfrac{\log \color{#D61F06}{a}}{\log \color{#3D99F6}{b}}

log2m=logmlog212=logmlog212=logm12log2=112logmlog2=2log2m\log_{\color{#3D99F6}{\sqrt{2}}} \color{#D61F06}{m}\\ \\ = \dfrac{\log \color{#D61F06}{m}}{\log \color{#3D99F6}{2^{\tfrac{1}{2}}}}\\ \\ = \dfrac{\log m}{\log 2^{\color{#20A900}{\tfrac{1}{2}}}}\\ \\ = \dfrac{\log m}{\color{#20A900}{\dfrac{1}{2}} \log 2}\\ \\ = \dfrac{1}{\frac{1}{2}} \dfrac{\log \color{cyan}{m}}{\log \color{magenta}{2}}\\ \\ = \boxed{2} \log_{\color{magenta}{2}} \color{cyan}{m}

Note by Ashish Menon
5 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Any suggestions? I am practicing this for mastering LaTeX especially long division of polynomials.

Ashish Menon - 5 years, 2 months ago

Log in to reply

Log in to reply

Thank you, accept my THANKS, ;P

Ashish Menon - 5 years, 2 months ago

Thank u sir. Im a beginner now I can learn latex.

Rishabh Tiwari - 5 years, 1 month ago

THANK YOU Ashish for creating this note ..helped me to learn latex..thanks a ton.!!:)

Rishabh Tiwari - 5 years, 1 month ago

Log in to reply

Entirely welcome

Ashish Menon - 5 years, 1 month ago
×

Problem Loading...

Note Loading...

Set Loading...