This is my note for testingLaTeX \large \text {This is my note for testing} \LaTeX This is my note for testing L A T E X : P :P : P
A special thanks to \large \text {A special thanks to} A special thanks to Pi Han Goh \large \color{#D61F06}{\text {Pi Han Goh}} Pi Han Goh and \large \text {and} and Andrew Ellinor \large \color{#3D99F6}{\text {Andrew Ellinor}} Andrew Ellinor and \large \text {and} and Nihar Mahajan \large \color{#20A900}{\text {Nihar Mahajan}} Nihar Mahajan for the success of this note. \large \text {for the success of this note.} for the success of this note.
x = 2 + 5 = 7 \begin{aligned}
\begin{array}{c}x & = 2+5 \\
& = 7 \end {array} \end{aligned} x = 2 + 5 = 7
( 1 0 0 1 ) \begin {pmatrix} 1 & & 0\\ 0 & & 1\ \end {pmatrix} ( 1 0 0 1 ) × ( 1 0 0 1 ) \begin {pmatrix} 1 & & 0\\ 0 & & 1\ \end {pmatrix} ( 1 0 0 1 ) = ( 1 + 0 0 + 0 0 + 0 0 + 1 ) \begin {pmatrix} 1+0 & & 0+0\\ 0+0 & & 0+1\ \end {pmatrix} ( 1 + 0 0 + 0 0 + 0 0 + 1 ) = ( 1 0 0 1 ) \begin {pmatrix} 1 & & 0\\ 0 & & 1\ \end {pmatrix} ( 1 0 0 1 )
My name is Ashish \large{\color{magenta}{\text{My name is Ashish}}} My name is Ashish
x + 7 x = 24 ⟹ 8 x = 24 ⟹ x = 24 8 ∴ x = 3 \begin{aligned}
& x + 7x & = 24\\
\implies & 8x & =24\\
\implies & x & = \dfrac {24}{8}\\
\therefore & x & = \boxed{3} \end{aligned} ⟹ ⟹ ∴ x + 7 x 8 x x x = 2 4 = 2 4 = 8 2 4 = 3
Na X 2 C O X 3 + H X 2 O → N a O H + H X 2 O + C O X 2 \ce {{Na}_2CO_3 + H_2O -> NaOH + H_2O + CO_2} Na X 2 C O X 3 + H X 2 O N a O H + H X 2 O + C O X 2
( ↗ ∘ ↖ ≈ ↗ ∘ ↖ ⋃ ↗ ↘ ↗ ↘ ↗ ↘ ⌣ ) \begin{pmatrix} \nearrow \circ \nwarrow & \approx & \nearrow \circ \nwarrow\\ & \bigcup & \\ & \nearrow \searrow \nearrow \searrow \nearrow \searrow & \\& \smile & \end{pmatrix} ⎝ ⎜ ⎜ ⎛ ↗ ∘ ↖ ≈ ⋃ ↗ ↘ ↗ ↘ ↗ ↘ ⌣ ↗ ∘ ↖ ⎠ ⎟ ⎟ ⎞
0 5 5 \enclose l o n g d i v 3 7 3 5 ‾ 2 \LARGE{
\begin{array}{rll}
\phantom{0}\ \boxed{{5}} && \\[-2pt]
\boxed{{5}}\ \enclose{longdiv}{\boxed{{3}} \ \boxed{7}}\kern-.2ex \\[-2pt]
\underline{\boxed{{3}} \ \boxed{{5}}} && \\[-2pt]
\boxed{{2}}
\end{array} } 0 5 5 \enclose l o n g d i v 3 7 3 5 2
x + 1 x + 1 \enclose l o n g d i v x 2 + 2 x + 1 x 2 + x 0 0 0 ‾ 0 0 x + 1 x + 1 ‾ 0 0 0 \LARGE{
\begin{array}{rll}
\boxed{{x}}\ + \boxed{{1}} && \\[-2pt]
\boxed{{x}}\ + \boxed{{1}} \enclose{longdiv}{\boxed{{x^2}}\ + \boxed{{2x}}\ + \boxed{{1}}}\kern-.2ex \\[-2pt]
\underline{\boxed{{x^2}}\ + \boxed{{x}}\ \phantom{0}\ \phantom{0}\ \phantom{0}} \phantom{0}\\[-2pt]
\phantom{0}\ \boxed{{x}}\ + \boxed{{1}}\kern-.2ex \\[-2pt]
\underline{\boxed{{x}}\ + \boxed{{1}}} && \\[-2pt]
\phantom{0}\ \phantom{0}\ \boxed{{0}}
\end{array} } x + 1 x + 1 \enclose l o n g d i v x 2 + 2 x + 1 x 2 + x 0 0 0 0 0 x + 1 x + 1 0 0 0
\begin{aligned} \begin {array}
x & \dfrac{29 \times 7}{116}\\
= & \dfrac{{{\cancel {29}}} \times 7}{{\require {cancel}{\cancel {116}}} 4}\\
= & \boxed {\dfrac{7}{4}} \end {array} \end{aligned}
I ♡ Brilliant \huge \text{I ♡ Brilliant} I ♡ Brilliant
Here are some symbols : − ♤ ■ □ ● ◇ ◆ • ○ ♡ ♧ ¡ ¿ 《 》 ¤ ° ♧ ▪ \large \text{Here are some symbols} :- ♤■□●◇◆•○♡♧¡¿《》¤°♧▪ Here are some symbols : − ♤ ■ □ ● ◇ ◆ • ○ ♡ ♧ ¡ ¿ 《 》 ¤ ° ♧ ▪
10 20 = \require c a n c e l 10 20 2 = 1 2 \begin{aligned}
\dfrac {10}{20} & =\require {cancel}{\dfrac {\xcancel{10}}{\xcancel{20}2}}\\
& = \dfrac {1}{2} \end{aligned} 2 0 1 0 = \require c a n c e l 2 0 2 1 0 = 2 1
B R I L L I A N T {\Huge {\color{#D61F06}{B}}}{\huge{\color{#3D99F6}{R}}}{\LARGE {\color{#CEBB00}{I}}}{\Large{\color{#20A900}{L}}}{\large{\color{magenta}{L}}}{\Large{\color{#69047E}{I}}}{\LARGE{\color{#333333}{A}}}{\huge{\color{#E81990}{N}}}{\Huge{\color{#624F41}{T}}} B R I L L I A N T
5 + 4 = 8 + 1 = 9 7 + 2 = 8 + 1 = 9 \begin{aligned}
5+4 & = 8 +1\\
& = 9 \\ \\
7+2 & = 8+1\\
& = 9 \end{aligned} 5 + 4 7 + 2 = 8 + 1 = 9 = 8 + 1 = 9
x 2 x 3 x 4 x 5 x 5 x 4 x 3 x 2 x x x x x 2 x 3 x 4 x 5 = x x 5 + x 11 + 24 24 x 15 \Huge \sqrt[\sqrt[x^5]{\sqrt[x^4]{\sqrt[x^3]{\sqrt[x^2]{\sqrt[x]{x}}}}}]{\sqrt[5\sqrt[x]{\sqrt[2x]{\sqrt[3x]{\sqrt[4x]{x}}}}]{\sqrt[5x]{\sqrt[4x]{\sqrt[3x]{\sqrt[2x]{x}}}}}} = x^{x^{5 + \tfrac{x^{11} + 24}{24x^{15}}}} x 5 x 4 x 3 x 2 x x 5 x 2 x 3 x 4 x x 5 x 4 x 3 x 2 x x = x x 5 + 2 4 x 1 5 x 1 1 + 2 4
Find the real value of x x x satisfying the real equation above.
Note \text{Note} Note :- Here x ≠ { − 1 , 0 , 1 } x \neq \{-1 , 0 , 1\} x = { − 1 , 0 , 1 }
4 x 4 ( 4 x 4 x ) x 4 4 \sqrt[\sqrt[4]{{\left(\sqrt[x]{4x^4}\right)}^{x^4}}]{\sqrt[4]{\sqrt[x]{4}}} 4 ( x 4 x 4 ) x 4 4 x 4 = 4 − 17 x − x 3 − 1 4^{-17x^{-x^3 - 1}} 4 − 1 7 x − x 3 − 1
( 4 x 4 x ) x 4 4 \sqrt[4]{{\left(\sqrt[x]{4x^4}\right)}^{x^4}} 4 ( x 4 x 4 ) x 4
4 x 4 1 ( 4 x 4 x ) x 4 4 {\sqrt[4]{\sqrt[x]{4}}}^{\tfrac{1}{\sqrt[4]{{\left(\sqrt[x]{4x^4}\right)}^{x^4}}}} 4 x 4 4 ( x 4 x 4 ) x 4 1
log 8 log 4 log 2 16 = log 8 log 4 4 = log 8 log 4 4 = log 8 1 = log 8 1 = 0 \log_8 \log_4 \color{#3D99F6}{\log_2 16}\\
= \log_8 \log_4 \color{#3D99F6}{4}\\
= \log_8 \color{#D61F06}{\log_4 4}\\
= \log_8 \color{#D61F06}{1}\\
= \color{#20A900}{\log_8 1}\\
= \color{#69047E}{\boxed{0}} log 8 log 4 log 2 1 6 = log 8 log 4 4 = log 8 log 4 4 = log 8 1 = log 8 1 = 0
log b a = log a log b \log_{\color{#3D99F6}{b}} \color{#D61F06}{a} = \dfrac{\log \color{#D61F06}{a}}{\log \color{#3D99F6}{b}} log b a = log b log a
log 2 m = log m log 2 1 2 = log m log 2 1 2 = log m 1 2 log 2 = 1 1 2 log m log 2 = 2 log 2 m \log_{\color{#3D99F6}{\sqrt{2}}} \color{#D61F06}{m}\\ \\
= \dfrac{\log \color{#D61F06}{m}}{\log \color{#3D99F6}{2^{\tfrac{1}{2}}}}\\ \\
= \dfrac{\log m}{\log 2^{\color{#20A900}{\tfrac{1}{2}}}}\\ \\
= \dfrac{\log m}{\color{#20A900}{\dfrac{1}{2}} \log 2}\\ \\
= \dfrac{1}{\frac{1}{2}} \dfrac{\log \color{cyan}{m}}{\log \color{magenta}{2}}\\ \\
= \boxed{2} \log_{\color{magenta}{2}} \color{cyan}{m} log 2 m = log 2 2 1 log m = log 2 2 1 log m = 2 1 log 2 log m = 2 1 1 log 2 log m = 2 log 2 m
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Any suggestions? I am practicing this for mastering LaTeX especially long division of polynomials.
Log in to reply
Here's a good website to learn some simple and easy LaTeX! Enjoyyyy
Log in to reply
Thank you, accept my THANKS, ;P
Thank u sir. Im a beginner now I can learn latex.
THANK YOU Ashish for creating this note ..helped me to learn latex..thanks a ton.!!:)
Log in to reply
Entirely welcome