BGN-2.1.2

Geometry 几何

theorems 定律

1)In any triangle ABCABC, AB<AC+BCAB\lt AC+BC.
1)对于任意三角形 ABCABCAB<AC+BCAB\lt AC+BC
2)For any right-angled triangle ABCABC with side aa as hypotenuse, a2=b2+c2a^2=b^2+c^2.
2)对于任意以 aa 为斜边的直角三角形 ABCABCa2=b2+c2a^2=b^2+c^2
3)For any triangle ABCABC, sinAa=sinBb=sinCc\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}.
3)对于任意三角形 ABCABCsinAa=sinBb=sinCc\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}
4)For any triangle ABCABC, a2=b2+c22bccosAa^2=b^2+c^2-2bc\cos A.
4)对于任意三角形 ABCABCa2=b2+c22bccosAa^2=b^2+c^2-2bc\cos A

proof 证明

Please try to prove 2) and 3) yourself using size relationships.
请自行尝试用面积关系证明定律 2) 和 3) 。

Trigonometry 三角学

theorems 定律

1) sin2θ+cos2θ=1(sin2θ=(sinθ)2)\sin ^2 \theta + \cos ^2 \theta = 1 {\kern 5em} ( \sin ^2 \theta = ( \sin \theta )^2)
2) sin(A±B)=sinAcosB±cosAsinB\sin (A\pm B) =\sin A \cos B \pm \cos A\sin B
3) cos(A±B)=cosAcosBsinAsinB\cos (A\pm B)=\cos A\cos B \mp \sin A\sin B
4) tan(A±B)=tanA±tanB1tanAtanB\tan (A\pm B)=\dfrac{\tan A \pm \tan B}{1\mp \tan A\tan B}
5) sin2α=2sinαcosα\sin 2\alpha =2\sin \alpha \cos \alpha
6) cos2α=cos2αsin2α=2cos2α1=12sin2α\cos 2\alpha = \cos ^2\alpha -\sin^2\alpha =2\cos ^2\alpha -1=1-2\sin ^2 \alpha
7) tan2α=2tanα1tan2α\tan 2\alpha = \dfrac{2\tan \alpha}{1-\tan ^2\alpha}
8) sin2A=1cos2A2\sin ^2 A=\dfrac{1-\cos 2A}{2}
9) cos2A=1+cos2A2\cos ^2 A=\dfrac{1+\cos 2A}{2}
10) tan2A=1cos2A1+cos2A\tan ^2 A=\dfrac{1-\cos 2A}{1+\cos 2A}
11) For a unit circle on a coordinate grid with its center at the origin, point P(cosθ,sinθ)P(\cos \theta ,\sin \theta ) is on the circle, and line OP\overline{OP} and the x-axis form an angle of θ\theta.
11)对于一个表示在坐标轴上且圆心在原点的单位圆,点 P(cosθ,sinθ)P(\cos \theta ,\sin \theta ) 一定在该圆上,而且直线 OP\overline{OP} 和x-轴的夹角为 θ\theta
12) tan(90A)=cot(A)\tan (90^\circ -A)=\cot (A)

proof 证明

11) will be used but not proved 11) 会被用来证明,但它本身不会被证明
Try to prove 1),5),6),7).
尝试证明 1),5),6),7).

Other proofs 其他证明:

Note by Jeff Giff
10 months, 1 week ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

@Páll Márton, I’ve been thinking of a proof for 8,9,10, but I have no idea. Can you help me?

Jeff Giff - 10 months ago

Log in to reply

Yeah. I can. \hspace{50px}

Log in to reply

Never mind :) I finally found the proof online

Jeff Giff - 10 months ago

LOL Your first(second) line is wrong

Log in to reply

oops... third

Log in to reply

or fourth with the title

Where?

Jeff Giff - 10 months ago

Log in to reply

@Jeff Giff Wait...whoa! Thanks!

Jeff Giff - 10 months ago

@Jeff Giff ABC, AB\gt AC+BC

P.S. I added one proof to the chain

Jeff Giff - 10 months ago

Log in to reply

In China the correct order is 2,3,1,5,6,7??? lol

Log in to reply

@A Former Brilliant Member Umm... actually there are two parts, and the numbers refer to the theorem in the part :)

Jeff Giff - 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...