1)In any triangle ABC, AB<AC+BC.
1)对于任意三角形 ABC , AB<AC+BC 。
2)For any right-angled triangle ABC with side a as hypotenuse, a2=b2+c2.
2)对于任意以 a 为斜边的直角三角形 ABC , a2=b2+c2 。
3)For any triangle ABC, asinA=bsinB=csinC.
3)对于任意三角形 ABC , asinA=bsinB=csinC 。
4)For any triangle ABC, a2=b2+c2−2bccosA.
4)对于任意三角形 ABC , a2=b2+c2−2bccosA 。
proof 证明
Please try to prove 2) and 3) yourself using size relationships.
请自行尝试用面积关系证明定律 2) 和 3) 。
See below 见下图:
Image 2.1.2-1 图2.1.2-1
Using size formulae of triangles 根据三角形面积公式:
SABC=21absinC=21bcsinA=21casinBdivide by half abc 除以一半abc⇒csinC=asinA=bsinB.
Trigonometry 三角学
theorems 定律
1) sin2θ+cos2θ=1(sin2θ=(sinθ)2)
2) sin(A±B)=sinAcosB±cosAsinB
3) cos(A±B)=cosAcosB∓sinAsinB
4) tan(A±B)=1∓tanAtanBtanA±tanB
5) sin2α=2sinαcosα
6) cos2α=cos2α−sin2α=2cos2α−1=1−2sin2α
7) tan2α=1−tan2α2tanα
8) sin2A=21−cos2A
9) cos2A=21+cos2A
10) tan2A=1+cos2A1−cos2A
11) For a unit circle on a coordinate grid with its center at the origin, point P(cosθ,sinθ) is on the circle, and line
OP and the x-axis form an angle of θ.
11)对于一个表示在坐标轴上且圆心在原点的单位圆,点 P(cosθ,sinθ) 一定在该圆上,而且直线 OP 和x-轴的夹角为 θ 。
12) tan(90∘−A)=cot(A)
proof 证明
11) will be used but not proved 11) 会被用来证明,但它本身不会被证明
Try to prove 1),5),6),7).
尝试证明 1),5),6),7).
A unit circle on a coordinate grid has representation x2+y2=1. From 11), let x=cosA,y=sinA, we have 1).
一个表示在坐标轴上的单位圆的表达式为 x2+y2=1 。让 x=cosA,y=sinA ,由 11) 可得 1) 。
From 2) 由 2)
sin2A=sinA+A=sinAcosA+cosAsinA=sinAcosA+sinAcosA=2sinAcosA
From 1) and 3) 由 1) 和 3)
cos2A=cosA+A=cosAcosA−sinAsinA=cos2A−sin2A=(1−sinA)−sinA=cosA−(1−sinA)
From 4) 由 4)
tan2A=tanA+A=1−tanAtanAtanA+tanA=1−tan2A2tanA
Other proofs 其他证明:
From 6) 由 6)
cos2A2sin2Asin2A=1−2sin2A=1−cos2A=21−cos2Arearrange 移项divide by 2 除以 2
From 6) 由 6)
cos2A−2cos2Acos2A=2cos2A−1=−1−cos2A=21+cos2Arearrange 移项divide by -2 除以 -2
tan2A=cos2Asin2Ause 8) and 9) 用 8) 和 9)=21+cos2A21−cos2A=1+cos2A1−cos2A
This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
@Páll Márton, I’ve been thinking of a proof for 8,9,10, but I have no idea. Can you help me?
Log in to reply
Yeah. I can.
Log in to reply
Never mind :) I finally found the proof online
LOL Your first(second) line is wrong
Log in to reply
oops... third
Log in to reply
or fourth with the title
Where?
Log in to reply
P.S. I added one proof to the chain
Log in to reply
In China the correct order is 2,3,1,5,6,7??? lol
Log in to reply