Binomial Coefficient Challenge 7!

Prove

k=0n(nk)(2kk)(12)k={12n(nn/2),n is even0,n is odd\displaystyle \sum_{k=0}^n{\binom{n}{k} \binom{2k}{k} {\left(\frac{-1}{2}\right)}^k} = \begin{cases} \frac{1}{2^n}\binom{n}{n/2}, & \text{n is even} \\ 0, & \text{n is odd} \end{cases}

Note by Kartik Sharma
4 years ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Since (2kk)  =  12πππeikt(1+eit)2kdt  =  12πππ(2cos12kt)2kdt {2k \choose k} \; = \; \frac{1}{2\pi}\int_{-\pi}^\pi e^{-ikt}(1 + e^{it})^{2k}\,dt \; = \; \frac{1}{2\pi}\int_{-\pi}^\pi \big(2\cos\tfrac12kt\big)^{2k}\,dt we have k=0n(nk)(2kk)(12)k=12πππ(nk)(2cos12kt)2k(12)kdt=12πππ(12cos212kt)ndt  =  (1)n2πππcosntdt=(1)n2n+1πππ(eit+eit)ndt  =  (1)n2n+1πk=0n(nk)ππei(2kn)tdt={12n(n12n)n even0n odd\begin{aligned} \sum_{k=0}^n {n \choose k}{2k \choose k}\big(-\tfrac12\big)^k & = \frac{1}{2\pi}\int_{-\pi}^\pi {n \choose k}\big(2\cos\tfrac12kt\big)^{2k} \big(-\tfrac12\big)^k\,dt \\ & = \frac{1}{2\pi}\int_{-\pi}^\pi \Big(1 - 2\cos^2\tfrac12kt\Big)^n\,dt \; = \; \frac{(-1)^n}{2\pi}\int_{-\pi}^\pi \cos^nt\,dt \\ & = \frac{(-1)^n}{2^{n+1}\pi}\int_{-\pi}^\pi \big(e^{it} + e^{-it}\big)^n\,dt \; = \; \frac{(-1)^n}{2^{n+1}\pi}\sum_{k=0}^n {n \choose k} \int_{-\pi}^{\pi} e^{i(2k-n)t}\,dt \\ & = \left\{ \begin{array}{lll} \frac1{2^n}{n \choose \frac12n} & \hspace{1cm} & n \mbox{ even} \\ 0 & & n \mbox{ odd} \end{array} \right. \end{aligned}

Try this one

Mark Hennings - 4 years ago
×

Problem Loading...

Note Loading...

Set Loading...