Prove -
∑k=0n−1(nk)(−1)n−k−1n−kkn=nn(Hn−1)\displaystyle \sum_{k=0}^{n-1}{\binom{n}{k} \frac{{(-1)}^{n-k-1}}{n-k} k^n} = n^n (H_n -1)k=0∑n−1(kn)n−k(−1)n−k−1kn=nn(Hn−1)
where HnH_nHn is nnnth Harmonic number.
Bonus
∑k=1n(nk)(−1)k−1k(x+ky)n=xn−1(xHn+ny)\displaystyle \sum_{k=1}^n{\binom{n}{k}\frac{{(-1)}^{k-1}}{k} {(x+ky)}^n} = x^{n-1} (x H_n + n y)k=1∑n(kn)k(−1)k−1(x+ky)n=xn−1(xHn+ny)
Note by Kartik Sharma 3 years, 12 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Since ∑k=1n(nk)(−1)k−1xk−1 = x−1−∑k=0n(nk)(−1)kxk−1 = 1−(1−x)nx \sum_{k=1}^n {n \choose k} (-1)^{k-1} x^{k-1} \; = \; x^{-1} - \sum_{k=0}^n {n \choose k} (-1)^k x^{k-1} \; =\; \frac{1 - (1-x)^n}{x} k=1∑n(kn)(−1)k−1xk−1=x−1−k=0∑n(kn)(−1)kxk−1=x1−(1−x)n for all xxx, we deduce that ∑k=1n(nk)(−1)k−1k−1 = ∫011−(1−x)nx dx = ∫011−xn1−x dx = Hn \sum_{k=1}^n {n \choose k}(-1)^{k-1} k^{-1} \; = \; \int_0^1 \frac{1 - (1-x)^n}{x}\,dx \; = \; \int_0^1 \frac{1 - x^n}{1-x}\,dx \; = \; H_n k=1∑n(kn)(−1)k−1k−1=∫01x1−(1−x)ndx=∫011−x1−xndx=Hn for all integers n≥1n \ge 1n≥1.
Next, ∑k=0n(nk)(−1)kkj = ∑k=0n(nk)(−1)n−k(n−k)j = (−1)nC(n,j) \sum_{k=0}^n {n \choose k}(-1)^k k^j \; = \; \sum_{k=0}^n {n \choose k}(-1)^{n-k} (n-k)^j \; = \; (-1)^n C(n,j) k=0∑n(kn)(−1)kkj=k=0∑n(kn)(−1)n−k(n−k)j=(−1)nC(n,j) for non-negative integers n,jn,jn,j, where C(n,j)C(n,j)C(n,j) is the number of surjections from a set of size jjj to a set of size nnn. In particular, then, ∑k=0n(nk)(−1)kkj = 00≤j<n \sum_{k=0}^n {n \choose k}(-1)^k k^j \; = \; 0 \hspace{2cm} 0 \le j < n k=0∑n(kn)(−1)kkj=00≤j<n Thus ∑k=1n(nk)(−1)k−1k(x+ky)n=∑j=0n(nj)xn−jyj∑k=1n(nk)(−1)k−1kj−1=∑j=01(nj)xn−jyj∑k=1n(nk)(−1)k−1kj−1+∑j=2n(nj)xn−jyj∑k=0n(nk)(−1)k−1kj−1=∑j=01(nj)xn−jyj∑k=1n(nk)(−1)k−1kj−1=xn∑k=1n(nk)(−1)k−1k−1+nxn−1y∑k=1n(nk)(−1)k−1=xnHn+nxn−1y \begin{aligned} \sum_{k=1}^n {n \choose k}\frac{(-1)^{k-1}}{k}(x+ky)^n & = \sum_{j=0}^n {n \choose j} x^{n-j} y^j \sum_{k=1}^n{n \choose k} (-1)^{k-1} k^{j-1} \\ & = \sum_{j=0}^1 {n \choose j}x^{n-j}y^j \sum_{k=1}^n {n \choose k}(-1)^{k-1}k^{j-1} + \sum_{j=2}^n {n \choose j}x^{n-j}y^j \sum_{k=0}^n {n \choose k}(-1)^{k-1} k^{j-1} \\ & = \sum_{j=0}^1 {n \choose j}x^{n-j}y^j \sum_{k=1}^n {n \choose k}(-1)^{k-1}k^{j-1} \\ & = x^n \sum_{k=1}^n {n \choose k}(-1)^{k-1} k^{-1} + nx^{n-1}y \sum_{k=1}^n {n \choose k}(-1)^{k-1} \\ & = x^nH_n + nx^{n-1}y \end{aligned} k=1∑n(kn)k(−1)k−1(x+ky)n=j=0∑n(jn)xn−jyjk=1∑n(kn)(−1)k−1kj−1=j=0∑1(jn)xn−jyjk=1∑n(kn)(−1)k−1kj−1+j=2∑n(jn)xn−jyjk=0∑n(kn)(−1)k−1kj−1=j=0∑1(jn)xn−jyjk=1∑n(kn)(−1)k−1kj−1=xnk=1∑n(kn)(−1)k−1k−1+nxn−1yk=1∑n(kn)(−1)k−1=xnHn+nxn−1y The main result follows by putting x=nx=nx=n and y=−1y=-1y=−1.
Log in to reply
Same method. We can also derive the main identity using forward difference operator for example here. Yet to find a method using only elementary summations though (for the main identity).
@Mark Hennings @Ishan Singh
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Since k=1∑n(kn)(−1)k−1xk−1=x−1−k=0∑n(kn)(−1)kxk−1=x1−(1−x)n for all x, we deduce that k=1∑n(kn)(−1)k−1k−1=∫01x1−(1−x)ndx=∫011−x1−xndx=Hn for all integers n≥1.
Next, k=0∑n(kn)(−1)kkj=k=0∑n(kn)(−1)n−k(n−k)j=(−1)nC(n,j) for non-negative integers n,j, where C(n,j) is the number of surjections from a set of size j to a set of size n. In particular, then, k=0∑n(kn)(−1)kkj=00≤j<n Thus k=1∑n(kn)k(−1)k−1(x+ky)n=j=0∑n(jn)xn−jyjk=1∑n(kn)(−1)k−1kj−1=j=0∑1(jn)xn−jyjk=1∑n(kn)(−1)k−1kj−1+j=2∑n(jn)xn−jyjk=0∑n(kn)(−1)k−1kj−1=j=0∑1(jn)xn−jyjk=1∑n(kn)(−1)k−1kj−1=xnk=1∑n(kn)(−1)k−1k−1+nxn−1yk=1∑n(kn)(−1)k−1=xnHn+nxn−1y The main result follows by putting x=n and y=−1.
Log in to reply
Same method. We can also derive the main identity using forward difference operator for example here. Yet to find a method using only elementary summations though (for the main identity).
@Mark Hennings @Ishan Singh