Binomial Coefficient Challenge 8!

Prove -

k=0n1(nk)(1)nk1nkkn=nn(Hn1)\displaystyle \sum_{k=0}^{n-1}{\binom{n}{k} \frac{{(-1)}^{n-k-1}}{n-k} k^n} = n^n (H_n -1)

where HnH_n is nnth Harmonic number.

Bonus

k=1n(nk)(1)k1k(x+ky)n=xn1(xHn+ny)\displaystyle \sum_{k=1}^n{\binom{n}{k}\frac{{(-1)}^{k-1}}{k} {(x+ky)}^n} = x^{n-1} (x H_n + n y)

Note by Kartik Sharma
3 years, 12 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Since k=1n(nk)(1)k1xk1  =  x1k=0n(nk)(1)kxk1  =  1(1x)nx \sum_{k=1}^n {n \choose k} (-1)^{k-1} x^{k-1} \; = \; x^{-1} - \sum_{k=0}^n {n \choose k} (-1)^k x^{k-1} \; =\; \frac{1 - (1-x)^n}{x} for all xx, we deduce that k=1n(nk)(1)k1k1  =  011(1x)nxdx  =  011xn1xdx  =  Hn \sum_{k=1}^n {n \choose k}(-1)^{k-1} k^{-1} \; = \; \int_0^1 \frac{1 - (1-x)^n}{x}\,dx \; = \; \int_0^1 \frac{1 - x^n}{1-x}\,dx \; = \; H_n for all integers n1n \ge 1.

Next, k=0n(nk)(1)kkj  =  k=0n(nk)(1)nk(nk)j  =  (1)nC(n,j) \sum_{k=0}^n {n \choose k}(-1)^k k^j \; = \; \sum_{k=0}^n {n \choose k}(-1)^{n-k} (n-k)^j \; = \; (-1)^n C(n,j) for non-negative integers n,jn,j, where C(n,j)C(n,j) is the number of surjections from a set of size jj to a set of size nn. In particular, then, k=0n(nk)(1)kkj  =  00j<n \sum_{k=0}^n {n \choose k}(-1)^k k^j \; = \; 0 \hspace{2cm} 0 \le j < n Thus k=1n(nk)(1)k1k(x+ky)n=j=0n(nj)xnjyjk=1n(nk)(1)k1kj1=j=01(nj)xnjyjk=1n(nk)(1)k1kj1+j=2n(nj)xnjyjk=0n(nk)(1)k1kj1=j=01(nj)xnjyjk=1n(nk)(1)k1kj1=xnk=1n(nk)(1)k1k1+nxn1yk=1n(nk)(1)k1=xnHn+nxn1y \begin{aligned} \sum_{k=1}^n {n \choose k}\frac{(-1)^{k-1}}{k}(x+ky)^n & = \sum_{j=0}^n {n \choose j} x^{n-j} y^j \sum_{k=1}^n{n \choose k} (-1)^{k-1} k^{j-1} \\ & = \sum_{j=0}^1 {n \choose j}x^{n-j}y^j \sum_{k=1}^n {n \choose k}(-1)^{k-1}k^{j-1} + \sum_{j=2}^n {n \choose j}x^{n-j}y^j \sum_{k=0}^n {n \choose k}(-1)^{k-1} k^{j-1} \\ & = \sum_{j=0}^1 {n \choose j}x^{n-j}y^j \sum_{k=1}^n {n \choose k}(-1)^{k-1}k^{j-1} \\ & = x^n \sum_{k=1}^n {n \choose k}(-1)^{k-1} k^{-1} + nx^{n-1}y \sum_{k=1}^n {n \choose k}(-1)^{k-1} \\ & = x^nH_n + nx^{n-1}y \end{aligned} The main result follows by putting x=nx=n and y=1y=-1.

Mark Hennings - 3 years, 12 months ago

Log in to reply

Same method. We can also derive the main identity using forward difference operator for example here. Yet to find a method using only elementary summations though (for the main identity).

Ishan Singh - 3 years, 12 months ago

@Mark Hennings @Ishan Singh

Kartik Sharma - 3 years, 12 months ago
×

Problem Loading...

Note Loading...

Set Loading...