Let S be a finite subset of rational number (Q) S ={x1,x2,x3.......xn} and f(x)=x-1∖x. Define R1 = {f(x1),f(x2),f(x3).......f(x4)} and S1= R1∩S R2 = {f(f(x1) ,f(f(x2 ) , f(f(x3 ) , .......f(f(xn ) and S2 =R2∩S and so on (S do not contain -1,0,1), prove that there exists (n∈N) such that Sn = Sn+1 = Sn+2 = ........∞=φ
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
let me see which brilliant mind is able to solve this..
Is f(x) = (x - 1)/x?
Log in to reply
no it's [ (x)-(1/x)]...please try it