∫01(ln 1x)p−1 xq−1 dx1−axq=1aqpΓ(p) Lip(a)\displaystyle \int_{0}^{1}{{\left(\ln\ \frac{1}{x}\right)}^{p-1}\ \frac{{x}^{q-1} \ dx}{1-a{x}^{q}}} = \frac{1}{a{q}^{p}} \Gamma(p)\ {\text{Li}}_{p}(a)∫01(ln x1)p−1 1−axqxq−1 dx=aqp1Γ(p) Lip(a)
Prove the identity above. where Lia(b){\text{Li}}_{a}(b)Lia(b) is the polylogarithm function.
Note by Kartik Sharma 5 years, 9 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Consider the following Lemma.
Lemma: ∫0∞ts−1etz−1dt=Γ(s)⋅Lis(z)\int_{0}^{\infty}\dfrac{t^{s-1}}{\frac{e^t}{z}-1} \mathrm{d}t = \Gamma(s) \cdot \operatorname{Li}_{s}(z)∫0∞zet−1ts−1dt=Γ(s)⋅Lis(z)
Proof: ∫0∞ts−1etz−1dt=∫0∞ts−1ze−t1−ze−tdt\displaystyle \int_{0}^{\infty}\dfrac{t^{s-1}}{\frac{e^t}{z}-1} \mathrm{d}t = \int_{0}^{\infty}\dfrac{t^{s-1}ze^{-t}}{1-ze^{-t}}\mathrm{d}t∫0∞zet−1ts−1dt=∫0∞1−ze−tts−1ze−tdt
=∫0∞ts−1∑r=0∞(ze−t)(r+1)dt\displaystyle = \int_{0}^{\infty} t^{s-1} \sum_{r=0}^{\infty}(ze^{-t})^{(r+1)} \mathrm{d}t=∫0∞ts−1r=0∑∞(ze−t)(r+1)dt
=∑r=0∞zr+1∫0∞ts−1e−t(r+1)dt\displaystyle = \sum_{r=0}^{\infty} z^{r+1} \displaystyle \int_{0}^{\infty} t^{s-1}e^{-t(r+1)} \mathrm{d}t=r=0∑∞zr+1∫0∞ts−1e−t(r+1)dt
∑r=0∞zr+1(r+1)sΓ(s)\displaystyle \sum_{r=0}^{\infty} \dfrac{z^{r+1}}{(r+1)^s} \Gamma(s)r=0∑∞(r+1)szr+1Γ(s)
=Γ(s)⋅Lis(z)\displaystyle = \Gamma(s) \cdot \operatorname{Li}_{s}(z)=Γ(s)⋅Lis(z)
Let,
I=∫01(ln1x)p−1xq−11−axqdx \displaystyle \text{I}=\int_{0}^{1} \left(\ln \dfrac{1}{x}\right)^{p-1} \dfrac{x^{q-1}}{1-ax^q} \mathrm{d}xI=∫01(lnx1)p−11−axqxq−1dx
Substitute x−q=etx^{-q}=e^tx−q=et,
⟹ I=1aqp∫0∞tp−1eta−1dt\displaystyle \implies \text{I} = \dfrac{1}{aq^p} \int_{0}^{\infty} \dfrac{t^{p-1}}{\frac{e^t}{a}-1} \mathrm{d}t⟹I=aqp1∫0∞aet−1tp−1dt
=1aqpΓ(p)⋅Lip(a) \displaystyle = \dfrac{1}{aq^p} \Gamma (p) \cdot \operatorname{Li}_{p}(a) =aqp1Γ(p)⋅Lip(a)
Q.E.D.
Log in to reply
That's correct! You're leading the race by miles!
Hats off! I'm getting to learn a lot!
good one friend!
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Consider the following Lemma.
Lemma: ∫0∞zet−1ts−1dt=Γ(s)⋅Lis(z)
Proof: ∫0∞zet−1ts−1dt=∫0∞1−ze−tts−1ze−tdt
=∫0∞ts−1r=0∑∞(ze−t)(r+1)dt
=r=0∑∞zr+1∫0∞ts−1e−t(r+1)dt
r=0∑∞(r+1)szr+1Γ(s)
=Γ(s)⋅Lis(z)
Let,
I=∫01(lnx1)p−11−axqxq−1dx
Substitute x−q=et,
⟹I=aqp1∫0∞aet−1tp−1dt
=aqp1Γ(p)⋅Lip(a)
Q.E.D.
Log in to reply
That's correct! You're leading the race by miles!
Hats off! I'm getting to learn a lot!
good one friend!