Can anyone prove it

Prove that If a+b+c=0 and a,b,c are real numbers, then prove a^5/5+b^5/5+c^5/5 = (a^3/3+b^3/3+c^3/3)(a^2/2+b^2/2+c^2/2)

Note by Alpha Beta
8 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Consider a,b,c to be the roots of the cubic equation x^3+sx+t=0, because a+b+c=0. So a^3+sa+t=0, b^3+sb+t=0, c^3+sc+t=0. So a^3+b^3+c^3+3t=0, by adding the above equations. So (a^3+b^3+c^3)= - 3t.

Also a+b+c=0, so a^2+b^2+c^2+2(ab+bc+ca)=0, (a^2^+b^2+c^2)= -(ab+bc+ca)= -2s.

Finally, x^3+sx+t=0 implies that x^5+sx^3+tx^2=0,

so, a^5+sa^3+ta^2=0, b^5+sb^3+tb^2=0, c^5+sc^3+tc^2=0.

adding these, we get (a^5+b^5+c^5)-3st-2st=0, So (a^5+b^5+c^5)/5 = st =(-s)(-t) = (a^3+b^3+c^3)/3 * (a^2+b^2+c^2)/2

Hence, proved.

Shourya Pandey - 8 years, 3 months ago

Log in to reply

Great,but I think there is a mistake ,in the starting of second line, it should be b^3 + sb +t=0, and not b^3+as+t=0....Then after adding those equations we will get -3t, otherwise we will get -3t-3as.

kiran patel - 8 years, 3 months ago

Log in to reply

Changes made...

Shourya Pandey - 8 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...