Can someone tell me how to approach and solve this problem..?

If \[(1+ax)^{n}=1+8x+24x^2+...\] and a line through P(a , n) cuts the circle \[x^2+y^2=4\] in A and B then PA.PB is equal to \[(a)4\] \[(b)8\] \[(c)16\] \[(d)32\]

Please explain the solution in DETAIL .....

#Algebra

Note by Parag Zode
6 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

(1+ax)n=1+nax+n(n1)2a2x2+.........=1+8x+24x2+.......Comparing coefficients,we getan=8 and (n1)(a)=6.Solving these two we get:a=2 and n=4.So the point P is(2,4).Now,length of the tangent on the given circle is=22+424.This comes to 4.Now,PAPB=PT2=42.Therefore,PAPB=16.PT:length of the tangent to the circle from P.(1+ax)^{n}=1+n*ax+\dfrac{n(n-1)}{2}*a^{2}*x^{2}+.........=1+8x+24x^{2}+.......Comparing\ \\co-efficients,we\ get a*n=8\ and\ (n-1)*(a)=6.Solving\ these\ two\ we\ get:a=2\ and\ n=4.So\ the\ \\point\ P\ is(2,4).Now,length\ of\ the\ tangent\ on\ the\ given\ circle\ is\\=\sqrt{2^{2}+4^{2}-4}.This\ comes\ to\ 4.Now,PA*PB=PT^{2}=4^{2}.\\Therefore,PA*PB=16.PT:length\ of\ the\ tangent\ to\ the\ circle\ from\ P.

satyendra kumar - 6 years, 7 months ago

Log in to reply

Nice solution! I advise you not to use latex in typing text! It will look more pleasant! See this for more info!

Pranjal Jain - 6 years, 7 months ago
×

Problem Loading...

Note Loading...

Set Loading...