1st Part: Can we define a negative number as even or odd?
I think it would be yes because any negative number when divided by 2 either leaves remainder of 0 and 1. I need suggestions about it.
2nd Part: The second part is tricky: Can we define a negative number to be prime or Composite?
If I define positive prime number as follows: An positive Integer having exactly two positive distinct factors. Then 2, 3, 5, 7,.... would be prime and 0, 1, 4, 6,.... would not be prime. If we take -2, it would have infinitely distinct factorizations: -2 = (-1)(2); -2 = (1)(-2); -2 = (-1)(-1)(-1)(2);...... and it doesn't obey fundamental theorem of Arithmetic since it isn't unique. Similarly taking prime factorizations of any negative Integer always give multiple factorizations. So, negative numbers couldn't be defined to be prime or composite in the same way as positive Integer greater than 1.
My real question is 'If I want to define "Negative Prime" in a different way, then how can I do it'?
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Yes, you can do all that. If you study ring theory, these things are well understood.