Can you find the fallacy?

Dany has a square sheet and a pen. He decides to close his eyes and randomly make a spot on the square sheet. Say he hits the centre in his first try. But as there are infinitely many points on the sheet, the probabability of him hitting the centre is zero. And we know that if an event E has probability zero, it cannot happen. So how come Dany was able to hit the centre and has cause an event that had probabability=0?

So, 'Can you find the fallacy?'.

#Combinatorics #Probability

Note by Dhruv Bhasin
6 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Well Dhruv, before explaining where the fallacy in your problem lies, let me first recapitulate the classical definition of probability of an event, which has been erroneously used in this problem:"If there are 'n' mutually exclusive, exhaustive and equally likely outcomes, or event points in the finite sample space of an experiment, and 'm' of them are favorable to an event A, then the mathematical probability of event A is given by:P(A)=mnP(A)=\frac { m }{ n } " What you have done is you have considered n to be infinity and m to be 1, and hence found out P(A) to be zero. Well, one upon infinity is not zero actually, it is an infinitesimally small quantity. But even that argument doesn't arise here, as the very consideration of n to be infinity is forbidden within the purview of classical probability. So, you cannot use the classical definition here (which actually talks of experiments with finite sample spaces), and there lies your fallacy.

Kuldeep Guha Mazumder - 5 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...