Can you make new generallization of this theorem for future mathematics

Fermat Last Theorem

#NumberTheory

Note by Budi Utomo
5 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Please note that Fermat's last theorem was originated from Pythagoras Theorem, where he (Fermat), must had known a very basic and simple trick which is too elementary to prove, what is the trick?,

"A primitive Pythagoras triplets (in co prime integers), are impossible with two sides of a right angle triangle being as powerful numbers"

Powerful number : is an integer which has all of its prime factors exponent are greater than one

Bassam Karzeddin - 5 years ago

I don't know how to generalize Fermat's Last Theorem, but I can give you a link. This paper is Andrew Wiles' original paper on his proof of Fermat's Last Theorem. It is called "Modular elliptic curves and Fermat's Last Theorem".

Ananth Jayadev - 5 years, 4 months ago

We may generalize the exponent to be a real positive algebraic number say (g), the generalization would be as this:

                                                  X^g + Y^g = Z^g

have no solution in distinct positive coprime integers, (X < Y < Z), where (g) is greater than two

This has a specific history that was older than accepted proof of FLT

Bassam Karzeddin - 5 years, 4 months ago

This link is very useful in this regard: http://hsm.stackexchange.com/questions/3257/sum-of-like-powers-in-real-numbers

Bassam Karzeddin - 5 years ago

Log in to reply

Editt: I mean "A primitive Pythagoras triplets (in co prime integers), are impossible with all sides of a right angle triangle being as powerful numbers", or "A primitive Pythagoras triplets (in co prime integers), are impossible with two sides of a right angle triangle being as powerful numbers of this form (x^n, y^m, z), where (n, m) are positive integers > 1, and (x, y, z) are positive integers"

Bassam Karzeddin - 4 years, 9 months ago
×

Problem Loading...

Note Loading...

Set Loading...