Canthesumofallpositiveintegersbe112Can\quad the\quad sum\quad of\quad all\quad positive\quad integers\quad be\quad -\frac { 1 }{ 12 } ?

Is1=112?Is\quad \sum _{ 1 }^{ \infty } =-\frac { 1 }{ 12 } ?\\ \quad

#Algebra

Note by Kristian Vasilev
6 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

LetS=1,S1=11+11+11+...,S2=12+34+56+.....S1=11+11+11+....+S1=11+11+1.....So2S1=1,thereforeS1=12,thenS2=12+34+56+....+S2=12+34+56+.....So2S2=11+11+11+...=12,thereforeS2=14S2=12+34+56+...=1+2+3+4+5+6+.....2(2+4+6+8+...)S2=S2×2S=3S=14ThereforeS=112.Let\quad S=\sum _{ 1 }^{ \infty } ,{ S }_{ 1 }=1-1+1-1+1-1+...,{ S }_{ 2 }=1-2+3-4+5-6+.....\\ \quad \quad \quad { S }_{ 1 }=1-1+1-1+1-1+....\quad \\ \quad \quad \quad +\\ \quad \quad \quad \quad \quad { S }_{ 1 }=1-1+1-1+1-.....\\ \quad So\quad 2{ S }_{ 1 }=1,therefore\quad { S }_{ 1 }=\frac { 1 }{ 2 } ,then\\ { S }_{ 2 }=1-2+3-4+5-6+....\\ +\\ \quad \quad { S }_{ 2 }=1-2+3-4+5-6+.....\\ So\quad 2{ S }_{ 2 }=1-1+1-1+1-1+...=\frac { 1 }{ 2 } ,therefore\quad { { S }_{ 2 }= }\frac { 1 }{ 4 } \\ { S }_{ 2 }=1-2+3-4+5-6+...=1+2+3+4+5+6+.....-2(2+4+6+8+...)\\ { S }_{ 2 }=S-2\times 2S=-3S=\frac { 1 }{ 4 } \\ Therefore\quad S=-\frac { 1 }{ 12 } .

Kristian Vasilev - 6 years, 5 months ago

Log in to reply

can you clarify summation of what? is it x

U Z - 6 years, 5 months ago

Log in to reply

Have I any mistakes?

Kristian Vasilev - 6 years, 5 months ago

I think this should be multiplication

Martin Nikolov - 6 years, 5 months ago

Log in to reply

@Martin Nikolov yes it is

Kristian Vasilev - 6 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...