Cant integrate

Solve this integration please!!

#Calculus #IndefiniteIntegral

Note by Hemant Khatri
6 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

@Calvin Lin i cant solve this please help

hemant khatri - 6 years, 9 months ago

Yeah i agreed... Please solve this

Kïñshük Sïñgh - 6 years, 9 months ago

I tell you question put up by you is not too hard but way too lengthy. Anyway here's the solution.

I=dxx3+x8=dxx3(1+x5)=dxx3x2dx1+x5I=\int { \frac { dx }{ { x }^{ 3 }+{ x }^{ 8 } } } =\int { \frac { dx }{ { x }^{ 3 }(1+{ x }^{ 5 }) } } =\int { \frac { dx }{ { x }^{ 3 } } } -\int { \frac { { x }^{ 2 }dx }{ 1+{ x }^{ 5 } } }

Now we can write : x5+1=(x+1)(x2+2xcos(2π5)+1)(x22xcos(π5)+1){x}^{5}+1=(x+1)({x}^{2}+2xcos(\frac{2\pi}{5})+1)({x}^{2}-2xcos(\frac{\pi}{5})+1)

Hence our II becomes :

I=2x2I1I=\frac{-2}{{x}^{2}}-{I}_{1}

I1=x2dx(x+1)(x2+2xcos(2π5)+1)(x22xcos(π5)+1){I}_{1}=\int { \frac { { x }^{ 2 }dx }{(x+1)({x}^{2}+2xcos(\frac{2\pi}{5})+1)({x}^{2}-2xcos(\frac{\pi}{5})+1) } }

after some tedious applications of partial fractions we get :

I1=15(1x+1+(12cos(π5))(x+1x22xcos(π5)+1)(12cos(2π5))(x+1x2+2xcos2π5+1)){ I }_{ 1 }=\frac { 1 }{ 5 } (\frac { 1 }{ x+1 } +(\frac { 1}{ 2cos(\frac { \pi }{ 5 } ) } )(\frac { x+1 }{ { x }^{ 2 }-2xcos(\frac { \pi }{ 5 } )+1 } )-(\frac { 1 }{ 2cos(\frac { 2\pi }{ 5 } ) } )(\frac { x+1 }{ { x }^{ 2 }+2xcos\frac { 2\pi }{ 5 } +1 } ))

I1=15log(x+1)+110cos(π5)J1110cos(2π5)J2\Rightarrow { I }_{ 1 }=\frac { 1 }{ 5 } log(x+1)+\frac { 1 }{ 10cos(\frac { \pi }{ 5 } ) } { J }_{ 1 }-\frac { 1 }{ 10cos(\frac { 2\pi }{ 5 } ) } { J }_{ 2 }

J1=(x+1)dx(x22xcosπ5+1)=12(2x2cosπ5x22xcosπ5+1dx)+(1+cosπ5)dx(xcosπ5)2+(sinπ5)2{ J }_{ 1 }=\int { \frac { (x+1)dx }{ ({ x }^{ 2 }-2xcos\frac { \pi }{ 5 } +1) } } =\frac { 1 }{ 2 } (\int { \frac { 2x-2cos\frac { \pi }{ 5 } }{ { x }^{ 2 }-2xcos\frac { \pi }{ 5 } +1 } dx } )+(1+cos\frac { \pi }{ 5 } )\int { \frac { dx }{ { ( x -cos\frac { \pi }{ 5 } ) }^{ 2 }+{ (sin\frac { \pi }{ 5 } })^{ 2 } } }

In the expression for J1{J}_{1} in the first integral put (x22xcosπ5+1)=t({ x }^{ 2 }-2xcos\frac { \pi }{ 5 } +1)=t and solve and the second integral can be solved putting (xcosπ5)=tan(t)sin(π5)(x -cos\frac { \pi }{ 5 } )=tan(t)sin(\frac{\pi}{5}) and solve to get :

J1=12ln(x22xcosπ5+1)+(1+cosπ5sinπ5)tan1(xcosπ5sinπ5){J}_{1}=\frac{1}{2}ln({ x }^{ 2 }-2xcos\frac { \pi }{ 5 } +1)+(\frac { 1+cos\frac { \pi }{ 5 } }{ sin\frac { \pi }{ 5 } } ){ tan }^{ -1 }(\frac { x-cos\frac { \pi }{ 5 } }{ sin\frac { \pi }{ 5 } } )

Similarly J2=(x+1)dx(x2+2xcos2π5+1)=12(2x+2cos2π5x2+2xcos2π5+1dx)+(1cos2π5)dx(x+cos2π5)2+(sin2π5)2{ J }_{ 2 }=\int { \frac { (x+1)dx }{ ({ x }^{ 2 }+2xcos\frac { 2\pi }{ 5 } +1) } } =\frac { 1 }{ 2 } (\int { \frac { 2x+2cos\frac {2 \pi }{ 5 } }{ { x }^{ 2 }+2xcos\frac {2\pi }{ 5 } +1 } dx } )+(1-cos\frac {2\pi }{ 5 } )\int { \frac { dx }{ { ( x +cos\frac { 2\pi }{ 5 } ) }^{ 2 }+{ (sin\frac { 2\pi }{ 5 } })^{ 2 } } }

Solving it similarly we get :

J2=12ln(x2+2xcos2π5+1)+(1cos2π5sin2π5)tan1(x+cos2π5sin2π5){J}_{2}=\frac{1}{2}ln({ x }^{ 2 }+2xcos\frac {2\pi }{ 5 } +1)+(\frac { 1-cos\frac { 2\pi }{ 5 } }{ sin\frac { 2\pi }{ 5 } } ){ tan }^{ -1 }(\frac { x+cos\frac { 2\pi }{ 5 } }{ sin\frac { 2\pi }{ 5 } } )

Putting back all the values we get I as :

I=2x215log(x+1)120cosπ5ln(x22xcosπ5+1)+120cos2π5ln(x2+2xcos2π5+1)1+cosπ510sinπ5cosπ5tan1(xcosπ5sinπ5)+1cos2π510sin2π5cos2π5tan1(x+cos2π5sin2π5)I=\frac { -2 }{ { x }^{ 2 } } -\frac { 1 }{ 5 } log(x+1)-\frac { 1 }{ 20cos\frac { \pi }{ 5 } } ln({ x }^{ 2 }-2xcos\frac { \pi }{ 5 } +1)+\frac { 1 }{ 20cos\frac { 2\pi }{ 5 } } ln({ x }^{ 2 }+2xcos\frac { 2\pi }{ 5 } +1)-\frac { 1+cos\frac { \pi }{ 5 } }{ 10sin\frac { \pi }{ 5 } cos\frac { \pi }{ 5 } } { tan }^{ -1 }(\frac { x-cos\frac { \pi }{ 5 } }{ sin\frac { \pi }{ 5 } } )\\+\frac { 1-cos\frac { 2\pi }{ 5 } }{ 10sin\frac { 2\pi }{ 5 } cos\frac { 2\pi }{ 5 } } { tan }^{ -1 }(\frac { x+cos\frac { 2\pi }{ 5 } }{ sin\frac { 2\pi }{ 5 } } )

Ronak Agarwal - 6 years, 9 months ago

Log in to reply

Very much complicated bro :D Anyways nice solution

Kïñshük Sïñgh - 6 years, 9 months ago

Log in to reply

Such integrals are always complicated.

Ronak Agarwal - 6 years, 9 months ago

Log in to reply

@Ronak Agarwal Yeah u r rite

Kïñshük Sïñgh - 6 years, 9 months ago

Awesome Solution...But can't it get shorter, bro?

Tushar Gopalka - 6 years, 9 months ago

Log in to reply

There's no way to get it shorter.

Ronak Agarwal - 6 years, 9 months ago
×

Problem Loading...

Note Loading...

Set Loading...