Let's say we have a cylinder of radius r with non-uniform density, resulting in a center of mass shifted away from center of geometry. Let's assume that this center of mass mid-way between center and circumference. So, r_cm = r/2.
Now, let's say this cylinder is rolling down on a curved path of radius R + r. Assume no slip condition.
What is the centripetal force on this cylinder? Does it have "two centripetal forces", from which we find a resultant?
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.