This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
Definition: Spectroscopy is the use of light, sound or particle emission to study matter. The emissions are, in many cases, able to provide information about the properties of the matter under investigation. The device often used for such analysis is a spectrometer, which records the spectrum of light emitted (or absorbed) by a given material, especially in analytical chemistry and physical chemistry fields, where the light can be used to determine the chemical composition of a substance because of signature spectral lines emitted by known elements.
Spectroscopy was originally the study of the interaction between radiation and matter as a function of wavelength. In fact, historically, spectroscopy referred to the use of visible light dispersed according to its wavelength, e.g. by a prism.
Spectroscopy pertains to the dispersion of an object's light into its component colors (i.e. energies). By performing this dissection and analysis of an object's light, astronomers can infer the physical properties of that object (such as temperature, mass, luminosity and composition).Spectroscopy was originally the study of the interaction between radiation and matter as a function of wavelength (''λ''). In fact, historically, spectroscopy referred to the use of visible light dispersed according to its wavelength, e.g. by a prism.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Definition: Spectroscopy is the use of light, sound or particle emission to study matter. The emissions are, in many cases, able to provide information about the properties of the matter under investigation. The device often used for such analysis is a spectrometer, which records the spectrum of light emitted (or absorbed) by a given material, especially in analytical chemistry and physical chemistry fields, where the light can be used to determine the chemical composition of a substance because of signature spectral lines emitted by known elements.
Spectroscopy is the study of the interaction between matter and radiated energy.
spectroscopy are terms used to the measurement of radiation intensity
Spectroscopy was originally the study of the interaction between radiation and matter as a function of wavelength. In fact, historically, spectroscopy referred to the use of visible light dispersed according to its wavelength, e.g. by a prism.
Spectroscopy pertains to the dispersion of an object's light into its component colors (i.e. energies). By performing this dissection and analysis of an object's light, astronomers can infer the physical properties of that object (such as temperature, mass, luminosity and composition).Spectroscopy was originally the study of the interaction between radiation and matter as a function of wavelength (''λ''). In fact, historically, spectroscopy referred to the use of visible light dispersed according to its wavelength, e.g. by a prism.