Chemistry

I am bringing in a little chemistry to brilliant community and I am hoping to hear from at least one of you. This is about Thermodynamics. It is said dS=q/T only for reversible reactions but while deriving the equation for Gibbs free energy we put dS = q/T for change in entropy of surroundings though we use the formula to find the spontaneity of reactions even irreversible. Derivation of G = H - TS

#Physics #Thermodynamics #Chemistry

Note by Selena Miller
7 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Sounds like Physical Chemistry.

The second law of thermodynamics tells us that the entropy of system is

dS = dq/T

for a reversible process. Note that this definition only applies to a reversible process, but that is consistent because the entropy of the system will always be calculated along a reversible path. In general, if we consider the system and the surroundings the second law states that the entropy of both (i.e. the universe) tends toward a maximum. If a change is reversible the heat exchanged between the system and surroundings dqrev will have a magnitude such that dqrev/T exactly is equal to the entropy change in the system dS. For an irreversible process the heat exchanged between the system and surroundings, dqirr will be less than TdS such that

dS > dqirr/T

The above explanation can be found here.

Also, remember that when calculating spontaneity of a reaction that S, G and H are STATE FUNCTIONS and therefore independent of path--so it doesn't matter whether q or qrev is used--the values of G, S and H will be the same; what will change is q--the value of the heat itself.

N. E. - 7 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...