Circles and Arcs

\(\text{Diagram shows a circle and } 4 \text{ congruent arcs. The } 4 \text{ arcs are:}\)

1. Arc BGHD centered at A1. \text{ Arc BGHD centered at A}

2. Arc AEHC centered at B 2. \text{ Arc AEHC centered at B }

3. Arc BFED centered at C 3. \text{ Arc BFED centered at C }

4. Arc AFGC centered at D 4. \text{ Arc AFGC centered at D }

 AB, BC, CD, and DA are each 90arcs\text{ AB, BC, CD, and DA are each }90^\circ \text{arcs}

Given:\text{Given:}

r=Radius of the circler = \text{Radius of the circle}

R=Radius of each arcR = \text{Radius of each arc}

Let EF =2q\text{Let EF } = 2q

Let θ=ACF \text{Let } \theta = \angle \text{ACF }

Using Pythagorean Theorem \text{Using Pythagorean Theorem}

R2=r2+r2R=2rR^2 = r^2 + r^2 \Leftrightarrow R = \sqrt2 r

R2=q2+(q+r)2(Using Pythagorean Theorem) R^2 = q^2 + (q + r)^2 \text{(Using Pythagorean Theorem)}

(2r)2=q2+q2+2qr+r2(\sqrt2 r)^2 = q^2 + q^2 + 2qr + r^2

2r2=2q2+2qr+r22r^2 = 2q^2 + 2qr + r^2

2q2+2qrr2=02q^2 + 2qr - r^2 = 0

q=2r±(2r)24(2)(r2)2(2)q = \dfrac{-2r \pm \sqrt{ (2r)^2 - 4(2)(-r^2) } }{ 2(2) }

q=2r±12r24q = \dfrac{-2r \pm \sqrt{ 12r^2 } }{4}

q=r±3(r)2q = \dfrac{-r \pm \sqrt3 (r)}{2}

q=312(r) , q>0q = \dfrac{ \sqrt3 - 1 }{2} (r) \text{ , } q > 0

sin(θ)=qR=312(r)2r \sin( \theta ) = \dfrac{q}{R} = \dfrac{ \frac{ \sqrt3 - 1 }{2} (r)}{ \sqrt2 r}

θ=arcsin(3122) \theta = \arcsin\left(\dfrac{ \sqrt3 -1}{2 \sqrt2} \right)

θ=π12 rad=15 \theta = \dfrac{\pi}{12} \text{ rad} = 15^\circ

Shaded area=4×(Area of sector ECFArea ofECF)+Area of square EFGH\text{Shaded area} = 4 \times( \text{Area of sector ECF} - \text{Area of} \triangle \text{ECF} ) + \text{Area of square EFGH}

Shaded area=4×[12×(2r)2(π12)12×(2r)2sin(π12)]+[2×312(r)]2\text{Shaded area} = 4 \times\left[ \dfrac{1}{2} \times (\sqrt2 r)^2 (\dfrac{\pi}{12} ) - \dfrac{1}{2} \times (\sqrt2 r)^2 \sin\left( \dfrac{\pi}{12} \right) \right] + \left[2 \times \dfrac{ \sqrt3 - 1 }{2} (r) \right]^2

Shaded area=πr232(31)r2+(31)2r2\text{Shaded area} = \dfrac{\pi r^2}{3} - \sqrt2 (\sqrt3 - 1)r ^2 + (\sqrt3 - 1)^2 r^2

Shaded area=πr23+(312)(31)r2\text{Shaded area} = \dfrac{\pi r^2}{3} + (\sqrt3 - 1 - \sqrt2 )(\sqrt3 - 1)r ^2

Shaded area Total area =πr23+(321)(31)r2πr2\dfrac{ \text{Shaded area} }{ \text{ Total area } } = \dfrac{ \dfrac{\pi r^2}{3} + (\sqrt3 - \sqrt2 - 1 )(\sqrt3 - 1)r ^2 }{\pi r^2}

Shaded area Total area =π+3(321)(31)3π=13+(321)(31)π\dfrac{ \text{Shaded area} }{ \text{ Total area } } = \dfrac{ \pi + 3(\sqrt3 - \sqrt2 - 1 )(\sqrt3 - 1) }{3 \pi } = \dfrac{1}{3} + \dfrac{ (\sqrt3 - \sqrt2 - 1 )(\sqrt3 - 1) }{\pi }

Note by Lin Shun Hao
1 year, 1 month ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...