I've heard that the arc length for certain curves such as \(y=x^2\) and \(y=e^x\) have closed forms. Is it known whether are similar closed forms for the arc lengths of \(x^3\), \(\frac{1}{x}\), or the trigonometric functions?
This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
As you probably already know, the formula for the arclength S of a 2D curve y=f(x) is
S=∫ab1+(f′(x))2dx.
For y=x2 we have S=∫ab1+4x2dx, for which we would use trig substitution with 2x=tan(θ).
For y=ex we have S=∫ab1+e2xdx, for which we could substitute u=1+e2x and end up with a (solvable) rational fraction in u.
However, for the other functions you mention we would end up having to solve some elliptic integrals, and as such we would not be able to get closed form arclength formulas. There aren't actually that many curves that we can get closed forms for; besides the two above, there is also the circle and the curve x32+y32=1.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
As you probably already know, the formula for the arclength S of a 2D curve y=f(x) is
S=∫ab1+(f′(x))2dx.
For y=x2 we have S=∫ab1+4x2dx, for which we would use trig substitution with 2x=tan(θ).
For y=ex we have S=∫ab1+e2xdx, for which we could substitute u=1+e2x and end up with a (solvable) rational fraction in u.
However, for the other functions you mention we would end up having to solve some elliptic integrals, and as such we would not be able to get closed form arclength formulas. There aren't actually that many curves that we can get closed forms for; besides the two above, there is also the circle and the curve x32+y32=1.