In collaboration with Kalpok Guha, we made a set of problems based around the topic of "types of numbers". There are many types of numbers out there and here are just a few of them.
This set serves primarially to teach everyone about the complexity of numbers and the many interesting properties they have because math is . Except for trig.... Trig is not pretty (lol, I'm bad at trig).
Here is a direct link to the set
here is another one because everyone knows two links are better than 1
Note: most of these problems are doable by hand using a NT approach but a CS approach works just as well.
The "special" numbers include:
Multiplicative perfect numbers- those whose factors when multiplied (including the number itself) yield .
Amicable pair- a number whose factors sum to and the factors of sum to .
Abundant number- a number whose factors including itself sum to greater than .
Deficient number- a number who's factors including itself sum to less than
Perfect number- a number who's factors including itself sum to
Narcissistic number- a number of digits that can be represented by the form and can be written in the form where is a whole number and for some positive integral value of .
Or I'm simplier form, a narcissistic number is one that when each individual digit is summed to the nth power, their sum is the original number.
I must say making this problem set taught me a lot of cool properties about numbers, some that I can't post because I can't think of a problem for them.
I even learned how to spell narcissistic: n-a-r-c-i-s-s-i-s-t-i-c,
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
We have really worked hard on the problems.I have made a set collaboration set So please like and re-share
Log in to reply
Nice work @Trevor Arashiro and @Kalpok Guha . ⌣¨ I was waiting for so long for this set. Had fun solving all of them.
Log in to reply
Thank you .
@Trevor Arashiro, what you defined in the section of "Narcissistic number" is actually the definition of Perfect Digital Invariant (PDI) and not of Narcissistic number. Note that for a PDI to be a narcissistic number, the power n for the elements of the sum should be equal to the number of digits of the given narcissistic number.
Check out the Wikipedia link on Narcissistic number for details.
Log in to reply
Yes, you would know what a narcissistic number is :3 lol
But thanks. Learned something once again.
Log in to reply
I'm not a narcissist in the least, you know. I have almost no self-respect, let alone self admiration. :\ :3
And btw, I think you should edit the note to correct that part.