This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
For (A), if two consecutive vertices are not found having the same colour, the worst case scenario is when 8 vertices are alternating between black and white. In this case, the 9th vertex will share a colour with one of its two neighboring vertices.
For (B), let a point A be the reference vertex. From A, no point on its left must be equidistant to it as a point from its right, otherwise the two points and A will form an isosceles triangle.Thus, let us assume that the vertex adjacent to A, to the left, is the same colour as A. Thus, a point to the right of A can be at least 2 vertices away. This pattern continues until the 4th and 5th vertices from A. By the pattern, they share the same colour as A, and thus, form an isosceles triangle. Also, in the case of 3 or more consecutively coloured points, there is always an isosceles triangle of the same coloured vertices.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
For (A), if two consecutive vertices are not found having the same colour, the worst case scenario is when 8 vertices are alternating between black and white. In this case, the 9th vertex will share a colour with one of its two neighboring vertices.
For (B), let a point A be the reference vertex. From A, no point on its left must be equidistant to it as a point from its right, otherwise the two points and A will form an isosceles triangle.Thus, let us assume that the vertex adjacent to A, to the left, is the same colour as A. Thus, a point to the right of A can be at least 2 vertices away. This pattern continues until the 4th and 5th vertices from A. By the pattern, they share the same colour as A, and thus, form an isosceles triangle. Also, in the case of 3 or more consecutively coloured points, there is always an isosceles triangle of the same coloured vertices.
Log in to reply
Nice job!!
Log in to reply
Thank you!