This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
First consider how you can distribute 5 balls over 3 players while every player gets at least 1 ball, where all balls are equal and all players are equal. You could give one player 3 balls and the other players both 1 ball, or you could give one player 1 ball and the other players both 2 balls. If you work out these cases separately, you'll find the answer.
answer is 150. in how many ways can you distribute 5 balls among 3 people such that atleast one of them gets 1? it is nothing but 3,1,1 and 2,2,1. so the desired answer will be (5!/3!)(3!/2!)+ (5!/ (2!)^2)(3!/2!) you need to multiply by 3!/2! because there are these many ways to arrange 3,1,1 or 2,2,1 . By evaluating the expression answer will come as 150.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
First consider how you can distribute 5 balls over 3 players while every player gets at least 1 ball, where all balls are equal and all players are equal. You could give one player 3 balls and the other players both 1 ball, or you could give one player 1 ball and the other players both 2 balls. If you work out these cases separately, you'll find the answer.
answer is 150. in how many ways can you distribute 5 balls among 3 people such that atleast one of them gets 1? it is nothing but 3,1,1 and 2,2,1. so the desired answer will be (5!/3!)(3!/2!)+ (5!/ (2!)^2)(3!/2!) you need to multiply by 3!/2! because there are these many ways to arrange 3,1,1 or 2,2,1 . By evaluating the expression answer will come as 150.
3^5 =243. (D)is the answer.
Log in to reply
how to do it????
Log in to reply
Ball 1 could go to person A, or B, or C -> 3 choices
Ball 2 could go to person A, or B, or C -> 3 choices
...
Ball 5 could go to person A, or B, or C -> 3 choices
3∗3∗3∗3∗3=35=243
Log in to reply