This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
All of the examples involve complex exponentiation of negative numbers, or, in the general case, complex exponentiation of complex numbers, which can have an infinity of values instead of an unique one. Consequently, we can't rely on ordinary identities and algebraic properties of exponentiation, as for example
(ab)c=(ac)b
is not true if a=−1, b=3, c=i.
Is there a "correct" answer to this? Outside of convention, no. This infinitude of values is an inherent property of complex exponentiation of complex numbers. So, special care has to be taken to avoid running into a multitude of "fallacies" as given above.
Sir, in the method 3, you can't just raise any power to 2m. for eg. x^2=(-x)^2. You will be including roots of both positive and negative functions. I hope I am right. If wrong please do correct me.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
(eiπ)i=a−π
⇒a=e
But:
(eiπ)i=(e3iπ)i=a−π
⇒a=e3
⇒e=e3
All of the examples involve complex exponentiation of negative numbers, or, in the general case, complex exponentiation of complex numbers, which can have an infinity of values instead of an unique one. Consequently, we can't rely on ordinary identities and algebraic properties of exponentiation, as for example
(ab)c=(ac)b
is not true if a=−1, b=3, c=i.
Is there a "correct" answer to this? Outside of convention, no. This infinitude of values is an inherent property of complex exponentiation of complex numbers. So, special care has to be taken to avoid running into a multitude of "fallacies" as given above.
Sir, in the method 3, you can't just raise any power to 2m. for eg. x^2=(-x)^2. You will be including roots of both positive and negative functions. I hope I am right. If wrong please do correct me.
In method 6,you have made calculation mistake in step 3