Complex number problem

If nn is a natural number such that i+2i2+3i3...nin=182\mid i+2i^{2}+3i^{3}...ni^{n}\mid=18\sqrt{2}.

Then what is(are) the value of nn?

Where i=1i=\sqrt{-1}.

#NumberTheory #MathProblem #Math

Note by Krishna Jha
7 years, 10 months ago

No vote yet
5 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Given i+2i2+3i3++nin=182 | i + 2i^2 + 3i^3 + \ldots + n i^{n} | = 18 \sqrt{2}

i+2i2+3i3++nin i + 2i^2 + 3i^3 + \ldots + n i^{n}

=(i+i2+i3++in) = (i + i^2 + i^3 + \ldots + i^n)

   +  (i2+i3++in) \space \space \space + \space \space (i^2 + i^3 + \ldots + i^n)

   +         (i3++in) \space \space \space + \space \space \space \space \space \space \space \space \space (i^3 + \ldots + i^n)

    \space \space \space \ldots

   +                            (in) \space \space \space + \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space (i^n)

=i(in1)i1+i2(in11)i1+i3(in21)i1++in(i11)i1 = \large \frac {i(i^n -1)}{i-1} + \frac {i^2 (i^{n-1} -1)}{i-1} + \frac {i^3 (i^{n-2} -1)}{i-1} + \ldots + \frac {i^n (i^{1} -1)}{i-1}

=1i1[i(in1)+i2(in11)+i3(in21)++in1(i21)+in(i1)] = \large \frac {1}{i-1} [ i(i^n -1) + i^2 (i^{n-1} - 1) + i^3 (i^{n-2} - 1) + \ldots + i^{n-1} ( i^2 - 1) + i^n (i - 1) ]

=1i1[n in+1i(in1)i1] = \large \frac {1}{i-1} [ n \space i^{n+1} - \frac {i(i^n -1)}{i-1} ]

=(1i1)2[(i1)n in+1i(in1)] = \large ( \frac {1}{i-1} )^2 [ (i-1) n \space i^{n+1} - i(i^n -1) ]

=12[n in+1+in(n+1)1] = \LARGE \frac {1}{2} [-n \space i^{n+1} + i^n (n+1) - 1 ]

Case I: n(mod4)=0in+1=i, in=1 n \pmod{4} = 0 \Rightarrow i^{n+1} = i, \space i^{n} = 1

n in+1+in(n+1)1=nni \large \Rightarrow -n \space i^{n+1} + i^n (n+1) - 1 = n - ni

n in+1+in(n+1)1=n2+n2 \large \Rightarrow | -n \space i^{n+1} + i^n (n+1) - 1 | = \sqrt{ n^2 + n^2 }

362=n2+n2n=36 \large \Rightarrow 36 \sqrt 2 = \sqrt{ n^2 + n^2 } \Rightarrow n = 36

Case II: n(mod4)=1in+1=1, in=i n \pmod{4} = 1 \Rightarrow i^{n+1} = -1, \space i^{n} = i

Solve this the same way and it yields no integer solution

Case III: n(mod4)=2in+1=i, in=1 n \pmod{4} = 2 \Rightarrow i^{n+1} = -i, \space i^{n} = -1

Likewise. No integer solution.

Case IV: n(mod4)=3in+1=1, in=i n \pmod{4} = 3 \Rightarrow i^{n+1} = 1, \space i^{n} = -i

Likewise, we get n=35n = 35

Hence, n=35,36 \LARGE n = \boxed{35}, \boxed{36}

Pi Han Goh - 7 years, 10 months ago

Log in to reply

Too lengthy , I also tried in the same way, but is there any short trick?.Otherwise your solution is nice....

Kishan k - 7 years, 10 months ago

Log in to reply

Well, I not sure if this is better or not. But....

Let f(n)=j=1nj ij \large f(n) = | \displaystyle \sum_{j=1}^n j \space i^j |

Then by trial and error, we have

f(3)=f(4)=22, f(7)=f(8)=42, f(11)=f(12)=62 f(3) = f(4) = 2 \sqrt2, \space f(7) = f(8) = 4 \sqrt2, \space f(11) = f(12) = 6 \sqrt2

This suggests that f(2k1)=f(2k)=k2 f(2k-1) = f(2k) = k \sqrt2 for some positive integer k>1k>1. I'm not sure I can prove this rigorously. Induction perhaps? Still thinking.

With that, we get k=182k1=35,2k=36n=35,36k = 18 \Rightarrow 2k-1 = 35, 2k = 36 \Rightarrow n=35,36

On the other hand, since we have a scalar multiple of 2 \sqrt2 on RHSRHS, this suggests that Re(i+2i2+3i3++nin)=Im(i+2i2+3i3++nin) | Re(i+2i^2 + 3i^3 + \ldots + n i^n) | = | Im(i+2i^2 + 3i^3 + \ldots + n i^n) | . Not sure how to continue...

Pi Han Goh - 7 years, 10 months ago

Log in to reply

@Pi Han Goh A shorter way: Let S=i+2i2+3i3+...+nin...(1)S=i+2i^{2}+3i^{3}+...+ni^{n}...(1)

iS=i2+2i3....+(n1)in+nin+1...(2)\hspace{30mm}iS =\hspace{4mm}i^{2}+2i^{3}....+(n-1)i^{n}+ni^{n+1}...(2)

Subtracting terms having same power of i in (1)(1) and (2)(2)...

We have S(1i)=i+i2+i3...innin+1S(1-i)=i+i^{2}+i^{3}...i^{n}-ni^{n+1}

After this applying formula for sum of G.P.

S(1i)=i(1in)1inin+1S(1-i)=\frac{i(1-i^{n})}{1-i}-ni^{n+1}

S=i(1in)(1i)2nin+11i\Rightarrow S=\frac{i(1-i^{n})}{(1-i)^{2}}-\frac{ni^{n+1}}{1-i}

Then the cases that you told... thanks for the cases. They just didnt come to my mind.

Krishna Jha - 7 years, 10 months ago

Log in to reply

@Krishna Jha Oh! You're welcome.

Pi Han Goh - 7 years, 10 months ago

Hey.. I think 1(i1)2=i2\frac{1}{(i-1)^{2}}=\frac{i}{2}?

You wrote 12-\frac{1}{2}..

Krishna Jha - 7 years, 10 months ago

Log in to reply

Oh man I'm horrible in spotting my own mistakes... Thanks!

Pi Han Goh - 7 years, 10 months ago

Hey man, good solution!! When I first saw the problem I also thought about the many sums of APs, but I definitely did not know how to work on it.

Leonardo Cidrão - 7 years, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...