This note is related to the previous note, please have a look if you haven't read that one.
This note deals with \(\color{Brown}{\text{the basics of complex numbers}}\) and \(\color{Purple}{\text{some useful results}}\) that will be needed in bash solutions.
Also, 2 examples of ComplexBash solutions, which might surprise you by their shortness over Pure geometry solutions.
The name of the note is , because complex numbers can be treated like vectors and that makes things easier at times. In fact, solutions that use vectors are many times very similar, except for the calculations.
Before that, I want to discuss some things about how they mark the bash solutions in Olympiads (at least in India). Take these as your rules for bashing:-
If you are stumped in a problem and are finding no way to get a solution by pure geometry, then only use bash.
If you are getting a strong feeling that the problem is not easy by pure geometry and you’ll not get going with pure geometry, start bashing.
Once you’ve started a bash solution, COMPLETE IT! Because in the marking scheme, they have one thing in mind, a bash solution is either a full mark solution or a 0.
When you are bashing, do not leave loose ends, like “The above equation reduces to zero after calculation, hence…”
You have to actually do ALL the calculations that are necessary and show the result, not just state it.
(skip if you know already)
Every complex number will have a magnitude and an angle that it makes with the real axis, called it’s argument , denoted by and always This is why we can treat complex numbers as vectors whenever required.
If , then and .
A complex number of unit modulus making an angle with real axis will be given by
Argument of all positive real numbers is and that of all negative real numbers is
Argument of all numbers of the form is for and for .
Every complex number is equivalent to a vector from Origin (complex number 0) to the point where it is denoted. Thus , a vector segment from to .
The complex number equivalent to the vector segment between and will be , and .
, adjust the addition/subtraction to bring it in the range(]
, where is the angle to be traced from in anticlockwise direction, in order to reach the direction same as . Thus in other words, .
As in above thing will be some real values, we can say for all with .
(Yeah, division by zero is not allowed in complex numbers too!)
will be a real number which will help us adjust the magnitude of our complex number.
With this much machinery, we are equipped enough to obtain some results we’ll be actually needing in geometry problems, so let’s begin the actual bashing!
The notations will be standard, (G,H,O etc) except for , which won’t be sides of triangles but the complex coordinates of the vertices respectively.
Here are that will prove helpful,
(not dealing with their proofs, we want the ‘Use’ of them more than ‘Proof’)
. Midpoint of segment between will be
. Centroid of a triangle with vertices will be .
. In a , points are circumcenter, centroid, orthocenter respectively.
As we know by Euler line, . If we take the complex numbers assigned to as , then
Now if we take the circumcircle of to be centered at origin, we get
In general, , where is circumcenter coordinates.
. If is equilateral, we have .
Also, if the names of vertices are in anticlockwise order, then is obtained by rotating by in anticlockwise direction,
. If , then you can say , where ,
Because .
Now something interesting,
Problems in this note are bit basic, but I feel you might feel them cool as the complex bashes are shorter than pure geometry... from next one there will be problems from Olympiads !
Given any , equilateral triangles are constructed externally on the sides of the triangle, to obtain points . Prove that centroid pf is same as centroid of .
– Let original triangle have complex coordinates .
Now let’s use the simple fact that is obtained by rotating by .
Similarly, ;
Now centroid of
As centroid of is also , we have proved the required result.
This will have solutions by pure geometry, but you can see they need more brain and are longer than what we did above….. But what’s more noteworthy is, imagine doing this by coordinate bash… You’d sink in the calculations to get points P,Q,R only!
On the sides of , squares are constructed externally (). Prove that centroids of triangles are all the same point.
– We use that is rotated by in anticlockwise direction in order to get .
Now observe that is just shift of by complex number
Similarly, we get all the required points, which are
Now it’s just easy calculation to find,
centroid of
centroid of
It’s noteworthy again that this solution is shorter and less brainy than Pure geometry and also, uses really very less calculations than Coordinate geometry…
With this, I’m concluding this part 2.
From next note onwards, there’ll be useful results and problems from past Olympiads.
If you enjoyed this, please share with your friends, who might be interested and seek help.
Stay tuned for more fun,
Happy Problem solving!
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
To @Parth Lohomi , thank you soooo much for that problem, saw it today and felt soooo happy, you remembered my brithday!
Want to see you too @IMOTC'16 :D
To the guys I'd like to meet in next year's IMOTC.... Something you'd like to know :)
@Satvik Golechha @Krishna Ar @Mehul Chaturvedi @Shivam Jadhav @Aditya Kumar @Harsh Shrivastava @Rishabh Tripathi
Log in to reply
Hi! I'd love to meet you too one day; but that's surely not going to be IMOTC. In 10th my RMO went good but still I didn't get selected, and I ain't taking it in 11th (JEE fever :(
Log in to reply
What! NO ! Please don't do that!
You can't just say 'JEE fever' and get your hands off Math Olympiads! If only you had been at the IMOTC, you'd know what it's like.... Dude take my word for this, the 1 month of IMOTC is 100 times more worth than 10 months of JEE coaching... Do NOT leave math Olympiad, even my teacher for JEE says that Olympiads never hamper the result of JEE, they'd enhance it....
This is for @Krishna Ar too, if you have any argument similar to @Satvik Golechha ....
Log in to reply
Would really like to meet you . I am preparing for it . I got selected for INMO in class X but could not qualify it . Please help me with it. I have sent a mail to you regarding it . Please reply.
Well... dude.. I'd like to get some details on this from you. Can you talk to me on facebook please. ?
In which class are you sir!I too want to reach that height of IMOTC.I am in class 10th and haven't given RMO yet but I want to go for it,but how to prepare for it and also boards are on my head .I want to learn Mathematics through olympiads and (bashing as an alternative to problems).I always wanted to get advice from someone like you.
Haha! This note is just wonderful but :'( I am sure you are kidding me about the IMOTC part.
@Aditya Raut I'd love to have more notes on Geometry bashes. Thanks for the note! :)
Hi sir.I m in class 10 right now and preparing for rmo.I aspire to reach as high as you have gone but some people say that as I m in 10th I should focus more on ntse but I m more intrested in math olympiads and it seems difficult to me to prepare for both the olympiads simultaneosly.Please advice me on what to do.By the way,bash notes were great and helped me a lot.
but how to find the intersection of 2 lines in complex bashing.
Thank u very much ..it helped me a lot..
hey! great work on the note. I would love to see it's next part. Maybe you can take up some problems from past olympiads, and some other useful results like reflections, and similarity. Anyways great work. :)
Hi, is part 3 out? If not, please make one. Also, these notes are very useful, thank you.
I cannot find P, Q, R in the first diagram.