Warren and Nadia have a straight path, one meter wide and 16 meters long, from the front door to the front gate. The decide to pave it. Warren brings home 16 identical paving stones, each 1 meters square. Nadia brings home 8 identical paving stones, each 1 meter x 2 meters. Assuming that they would consider using all square, all rectangular or a combination of each, what is the probability that the combination used consists of all Warren's blocks?
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
I'm getting
Pr(all Warren’s blocks)=∑i=08i!(16−2i)!(16−i)!1=15971
Nice problem. Fibonacci is the key - the number of ways of tiling a 1 by 16 path is equal to the number of ways of tiling a 1 by 15 path (by adding a 1 by 1 slab) plus the number of ways of tiling a 1 by 14 path (by adding a 1 by 2 slab), and so on. So there are 1597 (the 17th or 18th Fibonacci number, depending where you start) ways, giving a probability of 1/1597.
Now how about this question: they tile the path from the front door, and choose a slab at random each time from those they have remaining. What's the probability now that they use all of Warren's tiles? What about 8 of Warren's and 4 of Nadia's? More of Warren's than Nadia's? Warren's tiles make up more than half the length of the path?