confusion on limits

we generally use \[ \mathop {\lim }\limits_{x \to 0} \left( {1 + x^2 } \right)^{\frac{1}{{x^2 }}} = e \] how ever if exponent of a number approaching to \[ 1^ +
\]approaches to infinite then resultant should approach to infinite

#Math

Note by Shailendra Garg
8 years, 3 months ago

No vote yet
4 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Can you elaborate further?

o b - 8 years, 3 months ago

Log in to reply

(1+x^2) is greater than 1 and its exponent i.e 1/x^2 approaches to infinite , then this limit should approach to infinity, but it is 'e'. I know 'e' can be easily proved used logarithms or infinite series expansion. but the confusion again lies with my former statement

SHAILENDRA GARG - 8 years, 3 months ago

Log in to reply

You're making assumptions about growth that aren't correct.

o b - 8 years, 3 months ago

No that is not always true. A trivial example would be 0^x. In this case note that the base, i.e. (1+x^2) tends to 1 as x tends to 0. So the resultant expression doesn't approach infinity.

Sambit Senapati - 8 years, 3 months ago

Log in to reply

but likewise limx0(1+x2)1x4approaches  to  infinite \mathop {\lim }\limits_{x \to 0} \left( {1 + x^2 } \right)^{\frac{1}{{x^4 }}} {\rm{ approaches}}{\kern 1pt} \;{\rm{to}}\;{\rm{infinite}}

SHAILENDRA GARG - 8 years, 3 months ago

Log in to reply

As x becomes smaller and smaller the exponent approaches infinity while the base, i.e. 1+x^2 gets closer and closer to 1. So, the net result can't be guessed by us like that.

Sambit Senapati - 8 years, 3 months ago

By continuity of log, exp, and product, we have limx0(1+x2)1/x4=limx0((1+x2)1/x2)limx01/x2=elimx01/x2= \lim_{x\rightarrow 0} (1+x^2)^{1/x^4} = \lim_{x\rightarrow 0} ((1+x^2)^{1/x^2})^{\lim_{x\rightarrow 0}1/x^2} = e^{\lim_{x\rightarrow 0}1/x^2} = \infty

Kai Chung Tam - 8 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...