The Horizontal component of a conservative force and its relation to Potential Energy, \(U\), of the system is \(F_x = -\frac{\newcommand*\diff{\mathop{}\!\mathrm{d}} U}{\newcommand*\diff{\mathop{}\!\mathrm{d}} x}\). My physics book went further on to say that in 3 dimensions the equation becomes
Firstly why isn't it this instead
\vec{F} = -\frac{\newcommand*\diff{\mathop{}\!\mathrm{d}} U}{\newcommand*\diff{\mathop{}\!\mathrm{d}} x}\hat{i} - \frac{\newcommand*\diff{\mathop{}\!\mathrm{d}} U}{\newcommand*\diff{\mathop{}\!\mathrm{d}} y}\hat{j} - \frac{\newcommand*\diff{\mathop{}\!\mathrm{d}} U}{\newcommand*\diff{\mathop{}\!\mathrm{d}} z}\hat{k}
I'm quite new with partial derivates so a brief explanation of them would be helpful
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Not sure about this, understand that the U here as 3 components, and so therefore it is impossible to use the d in the second equation because there are 3 dependent variables. As far as i know of, normal differentiation doesn't work when you have more than 1 dependent variable.