In this note, I am going to present a list of convergent and divergent series.
lim n → ∞ ∑ k = 1 n 1 k \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k}} n → ∞ lim k = 1 ∑ n k 1 diverges.
lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) 1 diverges. You can read the note here .
lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) 1 converges.
lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) ( k + 3 ) 1 converges. You can read the note here .
lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) . . . ( k + p ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)...(k+p)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) . . . ( k + p ) 1 converges for positive integer p ≥ 2 p\geq2 p ≥ 2 .
First, I will show why lim n → ∞ ∑ k = 1 n 1 k \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k}} n → ∞ lim k = 1 ∑ n k 1 diverges.
The proof is rather straightforward.
We know that k ≤ k \sqrt{k}\leq k k ≤ k for positive integer k k k .
⇒ 1 k ≥ 1 k \Rightarrow \cfrac{1}{\sqrt{k}}\geq \cfrac{1}{k} ⇒ k 1 ≥ k 1
lim n → ∞ ∑ k = 1 n 1 k ≥ lim n → ∞ ∑ k = 1 n 1 k \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k}}\geq \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{k} n → ∞ lim k = 1 ∑ n k 1 ≥ n → ∞ lim k = 1 ∑ n k 1
lim n → ∞ ∑ k = 1 n 1 k \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{k} n → ∞ lim k = 1 ∑ n k 1 is the harmonic series , it diverges. You can see the proof here .
So, it follows that lim n → ∞ ∑ k = 1 n 1 k \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k}} n → ∞ lim k = 1 ∑ n k 1 diverges.
Next, I am going to show why lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) 1 converges.
I have to admit, the proof is not easy and I have invested a lot of brainpower in it.
k 2 + 2 k < k 2 + 2 k + 1 ⇒ k ( k + 2 ) < ( k + 1 ) 2 k^2+2k<k^2+2k+1\Rightarrow k(k+2)<(k+1)^2 k 2 + 2 k < k 2 + 2 k + 1 ⇒ k ( k + 2 ) < ( k + 1 ) 2
1 k ( k + 2 ) > 1 ( k + 1 ) 2 \cfrac{1}{k(k+2)}>\cfrac{1}{(k+1)^2} k ( k + 2 ) 1 > ( k + 1 ) 2 1
∴ 1 ( k + 1 ) ( k + 1 ) ( k + 1 ) < 1 k ( k + 1 ) ( k + 2 ) < 1 k ( k ) ( k ) \therefore \cfrac{1}{\sqrt{(k+1)(k+1)(k+1)}}<\cfrac{1}{\sqrt{k(k+1)(k+2)}}<\cfrac{1}{\sqrt{k(k)(k)}} ∴ ( k + 1 ) ( k + 1 ) ( k + 1 ) 1 < k ( k + 1 ) ( k + 2 ) 1 < k ( k ) ( k ) 1
1 ( k + 1 ) 3 < 1 k ( k + 1 ) ( k + 2 ) < 1 k 3 \cfrac{1}{\sqrt{(k+1)^3}}<\cfrac{1}{\sqrt{k(k+1)(k+2)}}<\cfrac{1}{\sqrt{k^3}} ( k + 1 ) 3 1 < k ( k + 1 ) ( k + 2 ) 1 < k 3 1
lim n → ∞ 1 ( k + 1 ) 3 < lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) < lim n → ∞ ∑ k = 1 n 1 k 3 \displaystyle{\lim_{n\to \infty}}\cfrac{1}{\sqrt{(k+1)^3}}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)}}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k^3}} n → ∞ lim ( k + 1 ) 3 1 < n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) 1 < n → ∞ lim k = 1 ∑ n k 3 1
lim n → ∞ ∑ k = 1 n 1 k 3 = 1 1 3 + 1 2 3 + 1 3 3 + 1 4 3 + 1 5 3 + 1 6 3 + 1 7 3 + 1 8 3 + 1 9 3 + . . . \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k^3}}=\cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{2^3}}+\cfrac{1}{\sqrt{3^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{5^3}}+\cfrac{1}{\sqrt{6^3}}+\cfrac{1}{\sqrt{7^3}}+\cfrac{1}{\sqrt{8^3}}+\cfrac{1}{\sqrt{9^3}}+... n → ∞ lim k = 1 ∑ n k 3 1 = 1 3 1 + 2 3 1 + 3 3 1 + 4 3 1 + 5 3 1 + 6 3 1 + 7 3 1 + 8 3 1 + 9 3 1 + . . .
1 1 3 + 1 4 3 + 1 4 3 + 1 4 3 + 1 9 3 + 1 9 3 + 1 9 3 + 1 9 3 + 1 9 3 + . . . < 1 1 3 + 1 2 3 + 1 3 3 + 1 4 3 + 1 5 3 + 1 6 3 + 1 7 3 + 1 8 3 + 1 9 3 + . . . < 1 1 3 + 1 1 3 + 1 1 3 + 1 4 3 + 1 4 3 + 1 4 3 + 1 4 3 + 1 4 3 + 1 9 3 + . . . \cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{9^3}}+\cfrac{1}{\sqrt{9^3}}+\cfrac{1}{\sqrt{9^3}}+\cfrac{1}{\sqrt{9^3}}+\cfrac{1}{\sqrt{9^3}}+...<\cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{2^3}}+\cfrac{1}{\sqrt{3^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{5^3}}+\cfrac{1}{\sqrt{6^3}}+\cfrac{1}{\sqrt{7^3}}+\cfrac{1}{\sqrt{8^3}}+\cfrac{1}{\sqrt{9^3}}+...<\cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{9^3}}+... 1 3 1 + 4 3 1 + 4 3 1 + 4 3 1 + 9 3 1 + 9 3 1 + 9 3 1 + 9 3 1 + 9 3 1 + . . . < 1 3 1 + 2 3 1 + 3 3 1 + 4 3 1 + 5 3 1 + 6 3 1 + 7 3 1 + 8 3 1 + 9 3 1 + . . . < 1 3 1 + 1 3 1 + 1 3 1 + 4 3 1 + 4 3 1 + 4 3 1 + 4 3 1 + 4 3 1 + 9 3 1 + . . .
1 1 3 + 1 4 3 + 1 4 3 + 1 4 3 + 1 9 3 + 1 9 3 + 1 9 3 + 1 9 3 + 1 9 3 + . . . = lim n → ∞ ∑ k = 1 n 2 k − 1 ( k 2 ) 3 = lim n → ∞ ∑ k = 1 n 2 k − 1 k 3 = lim n → ∞ ∑ k = 1 n ( 2 k 2 − 1 k 3 ) \cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{9^3}}+\cfrac{1}{\sqrt{9^3}}+\cfrac{1}{\sqrt{9^3}}+\cfrac{1}{\sqrt{9^3}}+\cfrac{1}{\sqrt{9^3}}+...=\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{2k-1}{\sqrt{(k^2)^3}}=\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{2k-1}{k^3}=\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} (\cfrac{2}{k^2}-\cfrac{1}{k^3}) 1 3 1 + 4 3 1 + 4 3 1 + 4 3 1 + 9 3 1 + 9 3 1 + 9 3 1 + 9 3 1 + 9 3 1 + . . . = n → ∞ lim k = 1 ∑ n ( k 2 ) 3 2 k − 1 = n → ∞ lim k = 1 ∑ n k 3 2 k − 1 = n → ∞ lim k = 1 ∑ n ( k 2 2 − k 3 1 )
1 1 3 + 1 1 3 + 1 1 3 + 1 4 3 + 1 4 3 + 1 4 3 + 1 4 3 + 1 4 3 + 1 9 3 + . . . = lim n → ∞ ∑ k = 1 n 2 k + 1 ( k 2 ) 3 = lim n → ∞ ∑ k = 1 n 2 k + 1 k 3 = lim n → ∞ ∑ k = 1 n ( 2 k 2 + 1 k 3 ) \cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{1^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{4^3}}+\cfrac{1}{\sqrt{9^3}}+...=\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{2k+1}{\sqrt{(k^2)^3}}=\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{2k+1}{k^3}=\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} (\cfrac{2}{k^2}+\cfrac{1}{k^3}) 1 3 1 + 1 3 1 + 1 3 1 + 4 3 1 + 4 3 1 + 4 3 1 + 4 3 1 + 4 3 1 + 9 3 1 + . . . = n → ∞ lim k = 1 ∑ n ( k 2 ) 3 2 k + 1 = n → ∞ lim k = 1 ∑ n k 3 2 k + 1 = n → ∞ lim k = 1 ∑ n ( k 2 2 + k 3 1 )
lim n → ∞ ∑ k = 1 n 1 k 2 = 1 2 + 1 2 2 = 1 3 2 + . . . = π 2 6 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{k^2}=1^2+\cfrac{1}{2^2}=\cfrac{1}{3^2}+...=\cfrac{\pi^2}{6} n → ∞ lim k = 1 ∑ n k 2 1 = 1 2 + 2 2 1 = 3 2 1 + . . . = 6 π 2
So, lim n → ∞ ∑ k = 1 n 1 k 2 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{k^2} n → ∞ lim k = 1 ∑ n k 2 1 converges.
1 k 3 < 1 k 2 \cfrac{1}{k^3}<\cfrac{1}{k^2} k 3 1 < k 2 1
lim n → ∞ ∑ k = 1 n 1 k 3 < lim n → ∞ ∑ k = 1 n 1 k 2 = π 2 6 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{k^3}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{k^2}=\cfrac{\pi^2}{6} n → ∞ lim k = 1 ∑ n k 3 1 < n → ∞ lim k = 1 ∑ n k 2 1 = 6 π 2
It follows that lim n → ∞ ∑ k = 1 n 1 k 3 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{k^3} n → ∞ lim k = 1 ∑ n k 3 1 converges.
lim n → ∞ ∑ k = 1 n 2 k − 1 k 3 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{2k-1}{k^3} n → ∞ lim k = 1 ∑ n k 3 2 k − 1 and lim n → ∞ ∑ k = 1 n 2 k + 1 k 3 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{2k+1}{k^3} n → ∞ lim k = 1 ∑ n k 3 2 k + 1 converges.
lim n → ∞ ∑ k = 1 n 2 k − 1 k 3 < lim n → ∞ ∑ k = 1 n 1 k 3 < lim n → ∞ ∑ k = 1 n 2 k + 1 k 3 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{2k-1}{k^3}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k^3}}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{2k+1}{k^3} n → ∞ lim k = 1 ∑ n k 3 2 k − 1 < n → ∞ lim k = 1 ∑ n k 3 1 < n → ∞ lim k = 1 ∑ n k 3 2 k + 1
∴ lim n → ∞ ∑ k = 1 n 1 k 3 \therefore \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k^3}} ∴ n → ∞ lim k = 1 ∑ n k 3 1 converges.
lim n → ∞ ∑ k = 1 n 1 ( k + 1 ) 3 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{(k+1)^3}} n → ∞ lim k = 1 ∑ n ( k + 1 ) 3 1 converges.
We have shown that lim n → ∞ ∑ k = 1 n 1 ( k + 1 ) 3 < lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) < lim n → ∞ ∑ k = 1 n 1 k 3 \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{(k+1)^3}}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)}}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k^3}} n → ∞ lim k = 1 ∑ n ( k + 1 ) 3 1 < n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) 1 < n → ∞ lim k = 1 ∑ n k 3 1
It follows that lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) 1 converges. The proof is complete.
Whew. That was pretty long.
Now, for the generalization lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) . . . ( k + p ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)...(k+p)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) . . . ( k + p ) 1 converges for positive integer p ≥ 2 p\geq2 p ≥ 2 .
1 k ( k + 1 ) ( k + 2 ) > 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) > . . . > 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + p ) \cfrac{1}{\sqrt{k(k+1)(k+2)}}>\cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}}>...>\cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)...(k+p)}} k ( k + 1 ) ( k + 2 ) 1 > k ( k + 1 ) ( k + 2 ) ( k + 3 ) 1 > . . . > k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + p ) 1 for some positive integer p ≥ 2 p\geq 2 p ≥ 2 .
lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) > lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) > . . . > lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + p ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)}}>\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)}}>...>\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)...(k+p)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) 1 > n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) ( k + 3 ) 1 > . . . > n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + p ) 1 for some positive integer p ≥ 2 p\geq 2 p ≥ 2 .
We have just shown that lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) 1 converges.
0 < lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + p ) < lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) 0<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)...(k+p)}}<\displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)}} 0 < n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + p ) 1 < n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) 1
So it follows that lim n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + p ) \displaystyle{\lim_{n\to \infty}}\sum_{k=1}^{n} \cfrac{1}{\sqrt{k(k+1)(k+2)(k+3)...(k+p)}} n → ∞ lim k = 1 ∑ n k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + p ) 1 converges for some positive integer p ≥ 2 p\geq 2 p ≥ 2 . The proof is complete.
That's all for now. It's the longest note that I've ever written.
Do correct me if I'm wrong. Feel free to share your thoughts with me on this note here.
I'm signing off for now. Until next time.
#Calculus
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
You could also start with kp+1<k(k+1)(k+2)⋯(k+p)<(k+p)p+1. Then apply p-test.
Log in to reply
What's a p test
Log in to reply
This.
That was very elaborate and hard to follow at some points but a great proof nonetheless. Honestly you can very quickly see that for p≥3 the series definitely converges by comparing the series to the Basel Problem Series and showing that the series converges for p=3 and since for p>3 the sum is less than for p=3 so it must converge as well. Anyway great problem.