Hey Brilliantinians! Here I have some amazing problems.
Problem 1 Let x,y,z be natural numbers. Find all triples such that:
6x−y2−76y−z2−76z−x2−7728x+729y+730z is a positive integer.
Problem 2 Proof that for any prime diferent that 2 and 5, there exists a multiple of p whose digit numbers are all 9's. For example, for p=13→999999=13⋅76923.
Problem 3
Natural numbers "a" and "b" satisfy that:
ba+1+ab+1 is an integer. Proof that the greatest common divisor of (a,b)≤a+b
This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
For Problem 2, we know that strings of n 9's are equal to 10^n - 1. Now by Fermat's Little Theorem, 10^(p-1) - 1 = 0 mod p where p is coprime to 10. As p is not 2 or 5 this statement is therefore true hence the result follows.
Just adding on, 3, 13, 31, 37, 41, 43, 53, 67, 71, 79, 83, 89, 107, 151, 157, 163, 173, 191, 197, 199, 227, 239, 241, 271, 277, 281, 283, 293, 307, 311, 317, 347, 359, 373, 397, 401, 409, 431, 439, 443, 449, 467, 479, 521, 523, 547, 557, 563, 569, 587, 599, 601, 613, 631, 641, ... are some of the numbers such that another string of 9s can be found that the number of nines that other string contains equals to 2p−1 apart from p−1.
Another way (generalised for any integer n not coprime to 2 or 5) is pigeonhole principle: out of the infinitely many powers of 10: 1, 10, 100, ... there exists two with the same remainder when divided by n. Subtracting gives a number 999...999000...000, but n is coprime to 2 or 5 so it divides 999...999.
If you don't remove the 0s then it becomes a proof for the problem below by @Calvin Lin
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
For Problem 2, we know that strings of n 9's are equal to 10^n - 1. Now by Fermat's Little Theorem, 10^(p-1) - 1 = 0 mod p where p is coprime to 10. As p is not 2 or 5 this statement is therefore true hence the result follows.
Log in to reply
That's exactly how it is done! With your permission I'll format your solution, just to make it more eye-pleasure for other people.
-We know that strings of n 9's are in the form 10n−1.
Now by Fermat's Little Theorem, 10p−1−1≡0(modp) if gcd(p,10)=1 As p is not 2 or 5 this statement is therefore true hence the result follows.
EXAMPLE: That means if we choose for example p=7→106−1=7k
NOTE: Fermat's Teorem doesn't give us the minimum 9's string that achieves the condition.
For example for p=13 using Fermat's Theorem we get 1012−1=999999999999≡0(mod13) but in the example we saw 999999=13⋅76923
Log in to reply
Yes, thank you for the formatting! In fact I think the lowest power of 10 which works is called the order of 10modp. Nice problem.
Just adding on, 3, 13, 31, 37, 41, 43, 53, 67, 71, 79, 83, 89, 107, 151, 157, 163, 173, 191, 197, 199, 227, 239, 241, 271, 277, 281, 283, 293, 307, 311, 317, 347, 359, 373, 397, 401, 409, 431, 439, 443, 449, 467, 479, 521, 523, 547, 557, 563, 569, 587, 599, 601, 613, 631, 641, ... are some of the numbers such that another string of 9s can be found that the number of nines that other string contains equals to 2p−1 apart from p−1.
Just something interesting I found.
Good observation.
This is another variant of the problem.
Another way (generalised for any integer n not coprime to 2 or 5) is pigeonhole principle: out of the infinitely many powers of 10: 1, 10, 100, ... there exists two with the same remainder when divided by n. Subtracting gives a number 999...999000...000, but n is coprime to 2 or 5 so it divides 999...999.
If you don't remove the 0s then it becomes a proof for the problem below by @Calvin Lin
Log in to reply
That is a very nice solution.