Counting (2,3,4 ....9) Here is very amazing result you will see while we do counting of 2,3,4 .... and we get digits repeat itself and sum of all always Nine.
1.Counting of 2
2 4 6 8 10 12 14 16 18 20 22 24
2 4 6 8 1 3 5 7 9 2 4 6
2+4+6+8+1+3+5+7+9=45=4+5=9
2 . Counting of 3
3 6 9 12 15 18 21 24 27 30
3 6 9 3 6 9 3 6 9
3+6+9=18=1+8=9
4 8 12 16 20 24 28 32 36 40
4 8 3 7 2 6 1 5 9 4
4+8+3+7+2+6+1+5+9=45=4+5=9
5 10 15 20 25 30 35 40 45 50
5 1 6 2 7 3 8 4 9
5+1+6+2+7+3+8+4+9=45=4+5=9
6 12 18 24 30 36 42 48 54 60
6 3 9 6 3 9 6 3 9
6+3+9=18=1+8=9
7 14 21 28 35 42 49 56 63 70
7 5 3 1 8 6 4 2 9
7+5+3+1+8+6+4+2+9=45=4+5=9
8 16 24 32 40 48 56 64 72 80
8 7 6 5 4 3 2 1 9
8+7+6+5+4+3+2+1+9=45=4+5=9
9 18 27 36 45 54 63 72 81 90
9 9 9 9 9 9 9 9
9=9
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.