Criteria for Integrable or differentiable function?

Hello, brilliant users. I've been wondering for a years since I've met calculus. Now I want to ask two questions:

  1. Can we find the criteria for function that only can integrable, but cannot differentiable? What is the example for this function? Why or why not if the function like that doesn't exist?

  2. Can we find the criteria for function that neither integrable nor differentiable? What is/are the example for this function? Thanks.

#Calculus #Advice #Math

Note by Leonardo Chandra
7 years, 9 months ago

No vote yet
2 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Case 1: f(x)=xf(x) = |x| is continuous everywhere, and so integrable. but is not differentiable at 00. You can create continuous functions (which are certainly integrable) which are differentiable at no point, but these are a bit more difficult to find. Have a look on the web for "nowhere differentiable functions", or "Weierstrass function".

Case 2: The function f(x)  =  {1x rational0x irrational f(x) \; = \; \left\{ \begin{array}{ll} 1 & x \mbox{ rational} \\ 0 & x \mbox{ irrational} \end{array}\right. is continuous nowhere, so certainly differentiable nowhere. Whether this function is integrable or not depends on your precise definition of integration. If you work with Riemann integration (the most common sort), then this function is not integrable. There is another theory of integration (Lebesgue integration) for which this function is integrable. However, there are examples of non-differentiable functions which fail to be integrable for that other theory of integration, too.

You might ask why there are a variety of theories of integration. The most intuitive is Riemann integration, which is (basically) the one we start by learning. In very broad terms, it is in the business of approximating areas under a curve by a large number of very narrow vertical strips, so that ydx  .  yδx  . \int y\,dx \; \approx. \; \sum y \delta x \;. The problem with Riemann integration is that it is not easy to prove useful theorems about it, and it is fundamentally a theorem about integration on finite intervals for bounded functions. You need to cheat a little to define an integral over an infinite range, or the integral of an unbounded function, creating what is called the improper Riemann integral.

Lebesgue integration is a theory which, in essence, turns the little strips on their side. It defines an integral by considering functions that can be obtained by piling up horizontal strips instead of vertical ones. Surprisingly, this has a remarkable effect. Firstly, it enables integrals of unbounded functions on bounded intervals to be defined, and is a theory for which really useful theorems can be proven. On the other hand, it is very precise about what being integrable means, and so there is a difference between what it means to be Riemann integrable and Lebesgue integrable.

Mark Hennings - 7 years, 9 months ago

Log in to reply

For anyone who wants to investigate further, the function stated in case two is the Dirichlet function.

Bob Krueger - 7 years, 9 months ago

Very interesting questions! Unfortunately, my own knowledge in integrals and differentials is too poor to provide an answer to this. However, I would really love to see someone elaborate!

Ivan Sekovanić - 7 years, 9 months ago
×

Problem Loading...

Note Loading...

Set Loading...