Curious Identity

Prove That

k=0n4k(2k)![(nk)!]2=(4n)![(2n)!]3\sum_{k=0}^{n}\frac{4^{k}}{\left(2k\right)!\left[\left(n-k\right)!\right]^{2}} = \dfrac{(4n)!}{[(2n)!]^3}


This is a part of the set Formidable Series and Integrals

#Calculus

Note by Ishan Singh
5 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Proposition : k=0n(2n2k)(2kk)4nk=(4n2n)\sum_{k=0}^{n} \dbinom{2n}{2k} \dbinom{2k}{k} 4^{n-k} = \dbinom{4n}{2n}

Proof : Consider a set of 4n4n natural numbers from 11 to 4n4n. We will choose a subset of 2n2n numbers. First way is the trivial (4n2n)\dbinom{4n}{2n}. Another way is the following. We define a corresponding pair, that is two natural numbers in the set, whose sum is 4n+14n+1. For example :- (1,4n) ,(2,4n1) , (2n,2n+1)(1,4n) \ , (2,4n-1) \ ,\ (2n, 2n+1) etc.

Now, the subsets of 2n2n natural numbers can have either 00 corresponding pairs, 11 corresponding pair, 22 corresponding pairs and at max nn corresponding pairs. We will find the number of ways of choosing exactly kk corresponding pairs.

First, we choose kk pairs in (2nk)\dbinom{2n}{k} ways. This can be seen by writing numbers 11 to 2n2n in one row and 2n+12n+1 to 4n4n in another. We now have to choose 2n2k2n-2k single numbers. Note that there are 2nk2n-k numbers left in both rows. To do this, we can either choose 00 numbers from first row and 2n2k2n-2k from second row, 11 number from first row and 2n2k12n-2k-1 numbers from the second row and so on. This can be stated as

(2nk)r=02n2k(2nkr)(2nkr2n2kr)\displaystyle \dbinom{2n}{k} \cdot \sum_{r=0}^{2n-2k} \dbinom{2n-k}{r} \cdot \dbinom{2n-k-r}{2n-2k-r}

Writing in factorials, we have,

(2nk)r=02n2k(2nk)!r!k!(2n2kr)!\displaystyle \dbinom{2n}{k} \cdot \sum_{r=0}^{2n-2k} \dfrac{(2n-k)!}{r! k! (2n-2k-r)!}

=(2nk)r=02n2k(2nk)!×(2n2k)!r!k!(2n2kr)!×(2n2k)!\displaystyle = \dbinom{2n}{k} \cdot \sum_{r=0}^{2n-2k} \dfrac{(2n-k)! \times \color{#3D99F6}{(2n-2k)!}}{r! k! (2n-2k-r)! \times \color{#3D99F6}{(2n-2k)!}}

=(2nk)(2nkk)r=02n2k(2n2kr) \displaystyle = \dbinom{2n}{k} \dbinom{2n-k}{k} \sum_{r=0}^{2n-2k} \dbinom{2n-2k}{r}

=(2nk)(2nkk)22n2k(r=0n(nr)=2n) \displaystyle = \dbinom{2n}{k} \dbinom{2n-k}{k} 2^{2n-2k} \qquad \left(\because \sum_{r=0}^{n} \dbinom{n}{r} = 2^{n} \right)

=(2n)!(k!)2(2n2k)!22n2k\displaystyle = \dfrac{(2n)!}{(k!)^2 (2n-2k)!} 2^{2n-2k}

=(2n2k)(2kk)22n2k\displaystyle = \dbinom{2n}{2k} \cdot \dbinom{2k}{k} 2^{2n-2k}

=(2n2k)(2kk)4nk\displaystyle = \dbinom{2n}{2k} \cdot \dbinom{2k}{k} 4^{n-k}

Finally, summing from k=0k=0 to k=nk=n, we have the identity,

k=0n(2n2k)(2kk)4nk=(4n2n) \displaystyle \sum_{k=0}^{n} \dbinom{2n}{2k} \dbinom{2k}{k} 4^{n-k} = \dbinom{4n}{2n} \ \square

Now,

S=k=0n4k(2k)![(nk)!]2\displaystyle \text{S} = \sum_{k=0}^{n}\frac{4^{k}}{\left(2k\right)!\left[\left(n-k\right)!\right]^{2}}

=k=0n4nk(2n2k)!(k!)2(k=0nf(k)=k=0nf(nk)) \displaystyle = \sum_{k=0}^{n} \dfrac{4^{n-k}}{(2n-2k)! (k!)^2} \qquad \left(\because \sum_{k=0}^{n} f(k) = \sum_{k=0}^{n} f(n-k) \right)

Writing in terms of binomial coefficients, we have,

S=1(2n)!k=0n(2n2k)(2kk)4nk\displaystyle \text{S} = \dfrac{1}{(2n)!} \sum_{k=0}^{n} \dbinom{2n}{2k} \dbinom{2k}{k} 4^{n-k}

Using the Proposition, we have,

S=1(2n)!(4n2n)\displaystyle \text{S} = \dfrac{1}{(2n)!} \cdot \dbinom{4n}{2n}

=(4n)![(2n)!]3\displaystyle = \boxed{\dfrac{(4n)!}{[(2n)!]^3}}

Ishan Singh - 5 years, 3 months ago

Not a solution:

I proceeded by the hint you gave i.e. by using beta function. But I got stuck. Please help.

k=0n4k(2k)![(nk)!]2=1n!k=0n(nk)4k(nk)!(k1)!01xk(1x)k1dx\sum _{ k=0 }^{ n }{ \frac { { 4 }^{ k } }{ \left( 2k \right) !{ \left[ \left( n-k \right) ! \right] }^{ 2 } } } =\frac { 1 }{ n! } \sum _{ k=0 }^{ n }{ \frac { \left( \begin{matrix} n \\ k \end{matrix} \right) { 4 }^{ k } }{ \left( n-k \right) !\left( k-1 \right) ! } \int _{ 0 }^{ 1 }{ { x }^{ k }{ \left( 1-x \right) }^{ k-1 }dx } }

Aditya Kumar - 5 years, 4 months ago

Let ξ=k=0n4k(2k)![(nk)!]2=1(2n)!k=0n(2n2k)(2kk)4nk\xi=\sum_{k=0}^n\frac{4^k}{(2k)![(n-k)!]^2}=\frac{1}{(2n)!}\sum_{k=0}^n\binom{2n}{2k}\binom{2k}{k}4^{n-k} Let Ω=k=0n(2n2k)(2kk)4nk\Omega=\sum_{k=0}^n\binom{2n}{2k}\binom{2k}{k}4^{n-k}

Using Beta function and the relation that Γ(p+12)=(2p1)!!2p=(2p)!4pp!\displaystyle \Gamma\left(p+\frac{1}{2}\right)=\frac{(2p-1)!!}{2^p}=\frac{(2p)!}{4^pp!} for pNp\in\Bbb{N} we get that (2kk)=4kπ01yk12(1y)12dy\binom{2k}{k}=\frac{4^k}{\pi}\int_0^1y^{k-\frac{1}{2}}(1-y)^{-\frac{1}{2}}dy Substituting this in Ω\Omega and then interchanging the summation and integral signs( Justified by Tonelli's Theorem) we get that Ω=4nπ011y(1y)(k=0n(2n2k)(y)2k)dy\Omega=\frac{4^n}{\pi}\int_0^1\frac{1}{\sqrt{y(1-y)}}\left(\sum_{k=0}^n\binom{2n}{2k}\left(\sqrt{y}\right)^{2k}\right)dy Using Binomial Theorem we get that k=0n(2n2k)x2k=(1+x)2n+(1x)2n2\sum_{k=0}^n\binom{2n}{2k}x^{2k}=\frac{(1+x)^{2n}+(1-x)^{2n}}{2} Ω=4nπ011y(1y)((1+y)2n+(1y)2n2)dy\Omega=\frac{4^n}{\pi}\int_0^1\frac{1}{\sqrt{y(1-y)}}\left(\frac{(1+\sqrt{y})^{2n}+(1-\sqrt{y})^{2n}}{2}\right)dy Substituting y=cos2xy=\cos^2x we get Ω=4nπ0π/2((1+cosx)2n+(1cosx)2n)dx\Omega=\frac{4^n}{\pi}\int_0^{\pi/2}\left((1+\cos x)^{2n}+(1-\cos x)^{2n}\right)dx

But we know that 2cos2(x2)=1+cosx\displaystyle 2\cos^2\left(\frac{x}{2}\right)=1+\cos x and 2sin2(x2)=1cosx\displaystyle 2\sin^2\left(\frac{x}{2}\right)=1-\cos x we get that Ω=42nπ0π/2((cos(x2))4n+(sin(x2))4n)dx\Omega=\frac{4^{2n}}{\pi}\int_0^{\pi/2}\left(\left(\cos\left(\frac{x}{2}\right)\right)^{4n}+\left(\sin\left(\frac{x}{2}\right)\right)^{4n}\right)dx

Substituting 2u=x2u=x we get Ω=242nπ0π/4((cosu)4n+(sinu)4n)du\Omega=\frac{2\cdot 4^{2n}}{\pi}\int_0^{\pi/4}((\cos u)^{4n}+(\sin u)^{4n})du

Now note that cos(x)=sin(π2x)\displaystyle \cos(x)=\sin\left(\frac{\pi}{2}-x\right) thus we get Ω=242nπ0π/2cos4n(u)du\Omega=\frac{2\cdot 4^{2n}}{\pi}\int_0^{\pi/2}\cos^{4n}(u)du

Using beta function we have that 0π/2cos2x1θsin2y1θdθ=B(x,y)2\int_0^{\pi/2}\cos^{2x-1}\theta\sin^{2y-1}\theta d\theta=\frac{B(x,y)}{2} hence Ω=42nπB(2n+12,12)=42nΓ(2n+12)Γ(12)Γ(2n+1)π\Omega=\frac{4^{2n}}{\pi}B\left(2n+\frac{1}{2},\frac{1}{2}\right)=\frac{4^{2n}\Gamma\left(2n+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(2n+1)\pi} =42n(4n1)!!ππ4nΓ(2n+1)π=\frac{4^{2n}(4n-1)!!\sqrt{\pi}\sqrt{\pi}}{4^n\Gamma(2n+1)\pi}

But (4n1)!!=(4n)!22n(2n)!\displaystyle (4n-1)!!=\frac{(4n)!}{2^{2n}(2n)!} Hence Ω=42n(4n)!42n((2n)!)2=(4n2n)\Omega=\frac{4^{2n}(4n)!}{4^{2n}((2n)!)^2}=\binom{4n}{2n}

Hence ξ=1(2n)!(4n2n)=(4n)!((2n)!)3\xi=\frac{1}{(2n)!}\binom{4n}{2n}=\frac{(4n)!}{((2n)!)^3}

Rohan Shinde - 1 year, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...