Prove That ∑k=0n4k(2k)![(n−k)!]2=(4n)![(2n)!]3\sum_{k=0}^{n}\frac{4^{k}}{\left(2k\right)!\left[\left(n-k\right)!\right]^{2}} = \dfrac{(4n)!}{[(2n)!]^3}k=0∑n(2k)![(n−k)!]24k=[(2n)!]3(4n)!
Prove That
∑k=0n4k(2k)![(n−k)!]2=(4n)![(2n)!]3\sum_{k=0}^{n}\frac{4^{k}}{\left(2k\right)!\left[\left(n-k\right)!\right]^{2}} = \dfrac{(4n)!}{[(2n)!]^3}k=0∑n(2k)![(n−k)!]24k=[(2n)!]3(4n)!
This is a part of the set Formidable Series and Integrals
Note by Ishan Singh 5 years, 4 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Proposition : ∑k=0n(2n2k)(2kk)4n−k=(4n2n)\sum_{k=0}^{n} \dbinom{2n}{2k} \dbinom{2k}{k} 4^{n-k} = \dbinom{4n}{2n}k=0∑n(2k2n)(k2k)4n−k=(2n4n)
Proof : Consider a set of 4n4n4n natural numbers from 111 to 4n4n4n. We will choose a subset of 2n2n2n numbers. First way is the trivial (4n2n)\dbinom{4n}{2n}(2n4n). Another way is the following. We define a corresponding pair, that is two natural numbers in the set, whose sum is 4n+14n+14n+1. For example :- (1,4n) ,(2,4n−1) , (2n,2n+1)(1,4n) \ , (2,4n-1) \ ,\ (2n, 2n+1) (1,4n) ,(2,4n−1) , (2n,2n+1) etc.
Now, the subsets of 2n2n2n natural numbers can have either 000 corresponding pairs, 111 corresponding pair, 222 corresponding pairs and at max nnn corresponding pairs. We will find the number of ways of choosing exactly kkk corresponding pairs.
First, we choose kkk pairs in (2nk)\dbinom{2n}{k}(k2n) ways. This can be seen by writing numbers 111 to 2n2n2n in one row and 2n+12n+12n+1 to 4n4n4n in another. We now have to choose 2n−2k2n-2k2n−2k single numbers. Note that there are 2n−k2n-k2n−k numbers left in both rows. To do this, we can either choose 000 numbers from first row and 2n−2k2n-2k2n−2k from second row, 111 number from first row and 2n−2k−12n-2k-12n−2k−1 numbers from the second row and so on. This can be stated as
(2nk)⋅∑r=02n−2k(2n−kr)⋅(2n−k−r2n−2k−r)\displaystyle \dbinom{2n}{k} \cdot \sum_{r=0}^{2n-2k} \dbinom{2n-k}{r} \cdot \dbinom{2n-k-r}{2n-2k-r} (k2n)⋅r=0∑2n−2k(r2n−k)⋅(2n−2k−r2n−k−r)
Writing in factorials, we have,
(2nk)⋅∑r=02n−2k(2n−k)!r!k!(2n−2k−r)!\displaystyle \dbinom{2n}{k} \cdot \sum_{r=0}^{2n-2k} \dfrac{(2n-k)!}{r! k! (2n-2k-r)!} (k2n)⋅r=0∑2n−2kr!k!(2n−2k−r)!(2n−k)!
=(2nk)⋅∑r=02n−2k(2n−k)!×(2n−2k)!r!k!(2n−2k−r)!×(2n−2k)!\displaystyle = \dbinom{2n}{k} \cdot \sum_{r=0}^{2n-2k} \dfrac{(2n-k)! \times \color{#3D99F6}{(2n-2k)!}}{r! k! (2n-2k-r)! \times \color{#3D99F6}{(2n-2k)!}} =(k2n)⋅r=0∑2n−2kr!k!(2n−2k−r)!×(2n−2k)!(2n−k)!×(2n−2k)!
=(2nk)(2n−kk)∑r=02n−2k(2n−2kr) \displaystyle = \dbinom{2n}{k} \dbinom{2n-k}{k} \sum_{r=0}^{2n-2k} \dbinom{2n-2k}{r} =(k2n)(k2n−k)r=0∑2n−2k(r2n−2k)
=(2nk)(2n−kk)22n−2k(∵∑r=0n(nr)=2n) \displaystyle = \dbinom{2n}{k} \dbinom{2n-k}{k} 2^{2n-2k} \qquad \left(\because \sum_{r=0}^{n} \dbinom{n}{r} = 2^{n} \right) =(k2n)(k2n−k)22n−2k(∵r=0∑n(rn)=2n)
=(2n)!(k!)2(2n−2k)!22n−2k\displaystyle = \dfrac{(2n)!}{(k!)^2 (2n-2k)!} 2^{2n-2k} =(k!)2(2n−2k)!(2n)!22n−2k
=(2n2k)⋅(2kk)22n−2k\displaystyle = \dbinom{2n}{2k} \cdot \dbinom{2k}{k} 2^{2n-2k}=(2k2n)⋅(k2k)22n−2k
=(2n2k)⋅(2kk)4n−k\displaystyle = \dbinom{2n}{2k} \cdot \dbinom{2k}{k} 4^{n-k}=(2k2n)⋅(k2k)4n−k
Finally, summing from k=0k=0k=0 to k=nk=nk=n, we have the identity,
∑k=0n(2n2k)(2kk)4n−k=(4n2n) □\displaystyle \sum_{k=0}^{n} \dbinom{2n}{2k} \dbinom{2k}{k} 4^{n-k} = \dbinom{4n}{2n} \ \square k=0∑n(2k2n)(k2k)4n−k=(2n4n) □
Now,
S=∑k=0n4k(2k)![(n−k)!]2\displaystyle \text{S} = \sum_{k=0}^{n}\frac{4^{k}}{\left(2k\right)!\left[\left(n-k\right)!\right]^{2}}S=k=0∑n(2k)![(n−k)!]24k
=∑k=0n4n−k(2n−2k)!(k!)2(∵∑k=0nf(k)=∑k=0nf(n−k)) \displaystyle = \sum_{k=0}^{n} \dfrac{4^{n-k}}{(2n-2k)! (k!)^2} \qquad \left(\because \sum_{k=0}^{n} f(k) = \sum_{k=0}^{n} f(n-k) \right) =k=0∑n(2n−2k)!(k!)24n−k(∵k=0∑nf(k)=k=0∑nf(n−k))
Writing in terms of binomial coefficients, we have,
S=1(2n)!∑k=0n(2n2k)(2kk)4n−k\displaystyle \text{S} = \dfrac{1}{(2n)!} \sum_{k=0}^{n} \dbinom{2n}{2k} \dbinom{2k}{k} 4^{n-k} S=(2n)!1k=0∑n(2k2n)(k2k)4n−k
Using the Proposition, we have,
S=1(2n)!⋅(4n2n)\displaystyle \text{S} = \dfrac{1}{(2n)!} \cdot \dbinom{4n}{2n}S=(2n)!1⋅(2n4n)
=(4n)![(2n)!]3\displaystyle = \boxed{\dfrac{(4n)!}{[(2n)!]^3}} =[(2n)!]3(4n)!
Not a solution:
I proceeded by the hint you gave i.e. by using beta function. But I got stuck. Please help.
∑k=0n4k(2k)![(n−k)!]2=1n!∑k=0n(nk)4k(n−k)!(k−1)!∫01xk(1−x)k−1dx\sum _{ k=0 }^{ n }{ \frac { { 4 }^{ k } }{ \left( 2k \right) !{ \left[ \left( n-k \right) ! \right] }^{ 2 } } } =\frac { 1 }{ n! } \sum _{ k=0 }^{ n }{ \frac { \left( \begin{matrix} n \\ k \end{matrix} \right) { 4 }^{ k } }{ \left( n-k \right) !\left( k-1 \right) ! } \int _{ 0 }^{ 1 }{ { x }^{ k }{ \left( 1-x \right) }^{ k-1 }dx } } k=0∑n(2k)![(n−k)!]24k=n!1k=0∑n(n−k)!(k−1)!(nk)4k∫01xk(1−x)k−1dx
Let ξ=∑k=0n4k(2k)![(n−k)!]2=1(2n)!∑k=0n(2n2k)(2kk)4n−k\xi=\sum_{k=0}^n\frac{4^k}{(2k)![(n-k)!]^2}=\frac{1}{(2n)!}\sum_{k=0}^n\binom{2n}{2k}\binom{2k}{k}4^{n-k}ξ=k=0∑n(2k)![(n−k)!]24k=(2n)!1k=0∑n(2k2n)(k2k)4n−k Let Ω=∑k=0n(2n2k)(2kk)4n−k\Omega=\sum_{k=0}^n\binom{2n}{2k}\binom{2k}{k}4^{n-k}Ω=k=0∑n(2k2n)(k2k)4n−k
Using Beta function and the relation that Γ(p+12)=(2p−1)!!2p=(2p)!4pp!\displaystyle \Gamma\left(p+\frac{1}{2}\right)=\frac{(2p-1)!!}{2^p}=\frac{(2p)!}{4^pp!}Γ(p+21)=2p(2p−1)!!=4pp!(2p)! for p∈Np\in\Bbb{N}p∈N we get that (2kk)=4kπ∫01yk−12(1−y)−12dy\binom{2k}{k}=\frac{4^k}{\pi}\int_0^1y^{k-\frac{1}{2}}(1-y)^{-\frac{1}{2}}dy(k2k)=π4k∫01yk−21(1−y)−21dy Substituting this in Ω\OmegaΩ and then interchanging the summation and integral signs( Justified by Tonelli's Theorem) we get that Ω=4nπ∫011y(1−y)(∑k=0n(2n2k)(y)2k)dy\Omega=\frac{4^n}{\pi}\int_0^1\frac{1}{\sqrt{y(1-y)}}\left(\sum_{k=0}^n\binom{2n}{2k}\left(\sqrt{y}\right)^{2k}\right)dyΩ=π4n∫01y(1−y)1(k=0∑n(2k2n)(y)2k)dy Using Binomial Theorem we get that ∑k=0n(2n2k)x2k=(1+x)2n+(1−x)2n2\sum_{k=0}^n\binom{2n}{2k}x^{2k}=\frac{(1+x)^{2n}+(1-x)^{2n}}{2}k=0∑n(2k2n)x2k=2(1+x)2n+(1−x)2n Ω=4nπ∫011y(1−y)((1+y)2n+(1−y)2n2)dy\Omega=\frac{4^n}{\pi}\int_0^1\frac{1}{\sqrt{y(1-y)}}\left(\frac{(1+\sqrt{y})^{2n}+(1-\sqrt{y})^{2n}}{2}\right)dyΩ=π4n∫01y(1−y)1(2(1+y)2n+(1−y)2n)dy Substituting y=cos2xy=\cos^2xy=cos2x we get Ω=4nπ∫0π/2((1+cosx)2n+(1−cosx)2n)dx\Omega=\frac{4^n}{\pi}\int_0^{\pi/2}\left((1+\cos x)^{2n}+(1-\cos x)^{2n}\right)dxΩ=π4n∫0π/2((1+cosx)2n+(1−cosx)2n)dx
But we know that 2cos2(x2)=1+cosx\displaystyle 2\cos^2\left(\frac{x}{2}\right)=1+\cos x2cos2(2x)=1+cosx and 2sin2(x2)=1−cosx\displaystyle 2\sin^2\left(\frac{x}{2}\right)=1-\cos x2sin2(2x)=1−cosx we get that Ω=42nπ∫0π/2((cos(x2))4n+(sin(x2))4n)dx\Omega=\frac{4^{2n}}{\pi}\int_0^{\pi/2}\left(\left(\cos\left(\frac{x}{2}\right)\right)^{4n}+\left(\sin\left(\frac{x}{2}\right)\right)^{4n}\right)dxΩ=π42n∫0π/2((cos(2x))4n+(sin(2x))4n)dx
Substituting 2u=x2u=x2u=x we get Ω=2⋅42nπ∫0π/4((cosu)4n+(sinu)4n)du\Omega=\frac{2\cdot 4^{2n}}{\pi}\int_0^{\pi/4}((\cos u)^{4n}+(\sin u)^{4n})duΩ=π2⋅42n∫0π/4((cosu)4n+(sinu)4n)du
Now note that cos(x)=sin(π2−x)\displaystyle \cos(x)=\sin\left(\frac{\pi}{2}-x\right)cos(x)=sin(2π−x) thus we get Ω=2⋅42nπ∫0π/2cos4n(u)du\Omega=\frac{2\cdot 4^{2n}}{\pi}\int_0^{\pi/2}\cos^{4n}(u)duΩ=π2⋅42n∫0π/2cos4n(u)du
Using beta function we have that ∫0π/2cos2x−1θsin2y−1θdθ=B(x,y)2\int_0^{\pi/2}\cos^{2x-1}\theta\sin^{2y-1}\theta d\theta=\frac{B(x,y)}{2}∫0π/2cos2x−1θsin2y−1θdθ=2B(x,y) hence Ω=42nπB(2n+12,12)=42nΓ(2n+12)Γ(12)Γ(2n+1)π\Omega=\frac{4^{2n}}{\pi}B\left(2n+\frac{1}{2},\frac{1}{2}\right)=\frac{4^{2n}\Gamma\left(2n+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(2n+1)\pi}Ω=π42nB(2n+21,21)=Γ(2n+1)π42nΓ(2n+21)Γ(21) =42n(4n−1)!!ππ4nΓ(2n+1)π=\frac{4^{2n}(4n-1)!!\sqrt{\pi}\sqrt{\pi}}{4^n\Gamma(2n+1)\pi}=4nΓ(2n+1)π42n(4n−1)!!ππ
But (4n−1)!!=(4n)!22n(2n)!\displaystyle (4n-1)!!=\frac{(4n)!}{2^{2n}(2n)!}(4n−1)!!=22n(2n)!(4n)! Hence Ω=42n(4n)!42n((2n)!)2=(4n2n)\Omega=\frac{4^{2n}(4n)!}{4^{2n}((2n)!)^2}=\binom{4n}{2n}Ω=42n((2n)!)242n(4n)!=(2n4n)
Hence ξ=1(2n)!(4n2n)=(4n)!((2n)!)3\xi=\frac{1}{(2n)!}\binom{4n}{2n}=\frac{(4n)!}{((2n)!)^3}ξ=(2n)!1(2n4n)=((2n)!)3(4n)!
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Proof : Consider a set of 4n natural numbers from 1 to 4n. We will choose a subset of 2n numbers. First way is the trivial (2n4n). Another way is the following. We define a corresponding pair, that is two natural numbers in the set, whose sum is 4n+1. For example :- (1,4n) ,(2,4n−1) , (2n,2n+1) etc.
Now, the subsets of 2n natural numbers can have either 0 corresponding pairs, 1 corresponding pair, 2 corresponding pairs and at max n corresponding pairs. We will find the number of ways of choosing exactly k corresponding pairs.
First, we choose k pairs in (k2n) ways. This can be seen by writing numbers 1 to 2n in one row and 2n+1 to 4n in another. We now have to choose 2n−2k single numbers. Note that there are 2n−k numbers left in both rows. To do this, we can either choose 0 numbers from first row and 2n−2k from second row, 1 number from first row and 2n−2k−1 numbers from the second row and so on. This can be stated as
(k2n)⋅r=0∑2n−2k(r2n−k)⋅(2n−2k−r2n−k−r)
Writing in factorials, we have,
(k2n)⋅r=0∑2n−2kr!k!(2n−2k−r)!(2n−k)!
=(k2n)⋅r=0∑2n−2kr!k!(2n−2k−r)!×(2n−2k)!(2n−k)!×(2n−2k)!
=(k2n)(k2n−k)r=0∑2n−2k(r2n−2k)
=(k2n)(k2n−k)22n−2k(∵r=0∑n(rn)=2n)
=(k!)2(2n−2k)!(2n)!22n−2k
=(2k2n)⋅(k2k)22n−2k
=(2k2n)⋅(k2k)4n−k
Finally, summing from k=0 to k=n, we have the identity,
k=0∑n(2k2n)(k2k)4n−k=(2n4n) □
Now,
S=k=0∑n(2k)![(n−k)!]24k
=k=0∑n(2n−2k)!(k!)24n−k(∵k=0∑nf(k)=k=0∑nf(n−k))
Writing in terms of binomial coefficients, we have,
S=(2n)!1k=0∑n(2k2n)(k2k)4n−k
Using the Proposition, we have,
S=(2n)!1⋅(2n4n)
=[(2n)!]3(4n)!
Not a solution:
I proceeded by the hint you gave i.e. by using beta function. But I got stuck. Please help.
k=0∑n(2k)![(n−k)!]24k=n!1k=0∑n(n−k)!(k−1)!(nk)4k∫01xk(1−x)k−1dx
Let ξ=k=0∑n(2k)![(n−k)!]24k=(2n)!1k=0∑n(2k2n)(k2k)4n−k Let Ω=k=0∑n(2k2n)(k2k)4n−k
Using Beta function and the relation that Γ(p+21)=2p(2p−1)!!=4pp!(2p)! for p∈N we get that (k2k)=π4k∫01yk−21(1−y)−21dy Substituting this in Ω and then interchanging the summation and integral signs( Justified by Tonelli's Theorem) we get that Ω=π4n∫01y(1−y)1(k=0∑n(2k2n)(y)2k)dy Using Binomial Theorem we get that k=0∑n(2k2n)x2k=2(1+x)2n+(1−x)2n Ω=π4n∫01y(1−y)1(2(1+y)2n+(1−y)2n)dy Substituting y=cos2x we get Ω=π4n∫0π/2((1+cosx)2n+(1−cosx)2n)dx
But we know that 2cos2(2x)=1+cosx and 2sin2(2x)=1−cosx we get that Ω=π42n∫0π/2((cos(2x))4n+(sin(2x))4n)dx
Substituting 2u=x we get Ω=π2⋅42n∫0π/4((cosu)4n+(sinu)4n)du
Now note that cos(x)=sin(2π−x) thus we get Ω=π2⋅42n∫0π/2cos4n(u)du
Using beta function we have that ∫0π/2cos2x−1θsin2y−1θdθ=2B(x,y) hence Ω=π42nB(2n+21,21)=Γ(2n+1)π42nΓ(2n+21)Γ(21) =4nΓ(2n+1)π42n(4n−1)!!ππ
But (4n−1)!!=22n(2n)!(4n)! Hence Ω=42n((2n)!)242n(4n)!=(2n4n)
Hence ξ=(2n)!1(2n4n)=((2n)!)3(4n)!