How would one solve this question:
There are 6 friends with 6 different letters E1, E2, E3, E4, E5, E6 to be posted to their respective friends. In how many ways can exactly 3 of the friends receive the right letter? I know that we have to do this problem using de-arrangements but I don't know how to. Please help!!
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are (36) ways to choose the three friends that will get the correct letter. As for the other friends there are two permutations that do not permute any friend to his/her letter (these are permutations with all cycles size greater than 1, which means in this case there is only one cycle size three). Therefore the answer is (36)⋅2=40
Log in to reply
In case we wanted exactly 4 persons, then would the answer be 30?
Log in to reply
Not quite. If you wanted 4 people then there would be (26)=15 ways to choose the two people that get the wrong letter. However, there is only one permutation of length 2 that has no cycle of 1, therefore the answer would just be 15.