Prove the following integral:
∫01xxdx= 11 1− 22 1+ 33 1− 44 1+⋯+nn (−1)n−1 +⋯
By expanding xx as a series:
xx=eln(xx)=exln(x)=n=0∑∞n!(xln(x))n
∫01xxdx=∫01n=0∑∞n!(xln(x))ndx=n=0∑∞n!1∫01xn(ln(x))ndx
Make the substitution of u=−ln(x), following by t=u(n+1) and you get that:
∫01xn(ln(x))ndx=∫∞0(e−u)n(−u)n(−e−u)du=(−1)n∫0∞e−u(n+1)undu
(−1)n∫0∞e−u(n+1)undu=(−1)n∫0∞e−t(n+1)n+1tndt=(n+1)n+1(−1)n∫0∞e−ttndt
Using the gamma function:
∫0∞e−ttndt=Γ(n−1)=n!
Therefore:
∫01xxdx=n=0∑∞n!1∫01xn(ln(x))ndx=n=0∑∞n!(−1)n∫0∞e−u(n+1)undu=n=0∑∞n!(n+1)n+1(−1)n ∫0∞e−ttndt=n=0∑∞n!(n+1)n+1n!(−1)n =n=1∑∞nn(−1)n−1 = 11 1− 22 1+ 33 1− 44 1+⋯+nn (−1)n−1 +⋯ (Proven!)
Bonus:
x−x=eln(x−x)=e−xln(x)=n=0∑∞n!(−1)n(xln(x))n
∫01x−xdx=∫01n=0∑∞n!(−1)n(xln(x))ndx=n=0∑∞n!(−1)n∫01xn(ln(x))ndx
∫01x−xdx=n=0∑∞n!(−1)n∫01xn(ln(x))ndx=n=0∑∞n!(−1)n(−1)n∫0∞e−u(n+1)undu=n=0∑∞n!(n+1)n+11∫0∞e−ttndt=n=0∑∞n!(n+1)n+1n!=n=1∑∞nn1= 11 1+ 22 1+ 33 1+ 44 1+⋯+nn1+⋯
#Calculus
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Nice use of gamma function .
With that bonus:
If ∫01f(x)dx=x=1∑∞f(x)
then f(x)=x−x.
Log in to reply
Wow! Is this the only solution?
Log in to reply
Interesting question! For starters, x→∞limf(x)=0