In the scenario of an one-dimensional elastic collision between two objects, 1 and 2, their final velocities, v1 and v2 can be found with the following formula knowing their individual masses, m1 and m2, and their initial velocities, u1 and u2.
Derivation:
In an elastic collision, momentum is conserved:
∑pfm1v1+m2v2m1v1−m1u1m1(v1−u1)=∑pi=m1u1+m2u2=m2u2−m2v2=m2(u2−v2)
In an elastic collision, kinetic energy is conserved:
∑Kf21m1v12+21m2v22m1v12+m2v22m1v12−m1u12m1(v12−u12)m1(v1−u1)(v1+u1)m2(u2−v2)(v1+u1)v1+u1v2=∑Ki=21m1u12+21m2u22=m1u12+m2u22=m2u22−m2v22=m2(u22−v22)=m2(u2−v2)(u2+v2)=m2(u2−v2)(u2+v2)=v2+u2=u1+v1−u2
∑pfm1v1+m2v2m1v1+m2(u1+v1−u2)m1v1+m2u1+m2v1−m2u2m1v1+m2v1(m1+m2)v1v1=∑pi=m1u1+m2u2=m1u1+m2u2=m1u1+m2u2=m1u1+2m2u2−m2u1=(m1−m2)u1+2m2u2=(m1+m2m1−m2)u1+(m1+m22m2)u2
v2v2v2v2v2=u1+v1−u2=u1+(m1+m2m1−m2)u1+(m1+m22m2)u2−u2=(1+m1+m2m1−m2)u1+(m1+m22m2−1)u2=(m1+m2m1+m2+m1+m2m1−m2)u1+(m1+m22m2−m1+m2m1+m2)u2=(m1+m22m1)u1+(m1+m2m2−m1)u2
∴v1v2=(m1+m2m1−m2)u1+(m1+m22m2)u2=(m1+m22m1)u1+(m1+m2m2−m1)u2
or, equivalently:
⎣⎡v1v2⎦⎤=m1+m21⎣⎡m1−m22m12m2m2−m1⎦⎤⎣⎡u1u2⎦⎤
#Mechanics
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.