Inspired by [http://en.wikipedia.org/wiki/Digit_sum] "digit sums for binary being on average smaller than those for any other base." Here's my attempt at the proposition.
if R is the radix, & N is the given integer value, the number of digits n required on radix R to represent N = [ln(N*R)/lnR], yes [] is the greatest integer or the floor function....
Clearly, N = A0 + A1R + A2Rsq + A3Rcube + ...... An(R^n) = Sum(Ai*R^i) & the digit sum DS = A0 + A1 + A2 + A3 + ...... +An = Sum(Ai)
we know CS inequality..., check the special case #1 of this link for reference. [http://en.wikipedia.org/wiki/Cauchy–Schwarz_inequality]
put Ai = ai, & R^i = bi... we get, [Sum(AiR^i)]sq <= Sum(Aisq)Sum(R^i sq)
Look closely, its... Nsq <= Sum(Aisq)Sum(R^i sq)... & Sum(R^i sq) is a GP..., we get Nsq <= Sum(Aisq)[(Rsq^n -1)/(Rsq-1)]...
Now we also know PowerMean inequality [https://www.artofproblemsolving.com/Wiki/index.php/PowerMeanInequality] according to which... sqrt[Avg(Aisq)]>=Avg(Ai).... write avg(Ai) = (1/n)*sum(Ai)..., mind you sum(Ai) is DS. Now substitute this into the Nsq inequality... we will get....
Nsq <= [(DS)sq/n][(Rsq^n -1)/(Rsq-1)]... &..., DS >= Nsqrt[n*(Rsq-1)/(Rsq^n-1)]
You can see that for any N, if we increase R from 2, the curve agrees with the proposition. With equality holding only for n=1, which makes sense, if R>N, then N can be represented on R in a single digit & DS would = N.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.