Dirichlet Triple Integral

Evaluate the triple integral I=xα1yβ1zγ1dxdydzI = \iiint { { x }^{ \alpha -1 }{ y }^{ \beta -1 }{ z }^{ \gamma -1 }dxdydz } over the curve (xa)p+(yb)q+(zc)r=1{\left(\frac{x}{a}\right)}^{p} +{\left(\frac{y}{b}\right)}^{q} + {\left(\frac{z}{c}\right)}^{r} = 1.

Solution

Let u=(xa)px=au1pu = {\left(\frac{x}{a}\right)}^{p} \Rightarrow x = a{u}^{\frac{1}{p}} v=(yb)qy=bv1qv = {\left(\frac{y}{b}\right)}^{q} \Rightarrow y = b{v}^{\frac{1}{q}} w=(zc)rz=cw1rw = {\left(\frac{z}{c}\right)}^{r} \Rightarrow z = c{w}^{\frac{1}{r}}

and

dx=apu1p1dudx = \frac{a}{p}{u}^{\frac{1}{p}-1}du dy=bqv1q1dvdy = \frac{b}{q}{v}^{\frac{1}{q}-1}dv dz=crw1r1dwdz = \frac{c}{r}{w}^{\frac{1}{r}-1}dw

After these substitutions, the integral becomes much lighter: I=aαbβcγpqruαp1vβq1wγr1dwdvduI = \frac{{a}^{\alpha}{b}^{\beta}{c}^{\gamma}}{pqr} \iiint { { u }^{ \frac{\alpha}{p} -1 }{ v }^{ \frac{\beta}{q} -1 }{ w }^{ \frac{\gamma}{r} -1 }dwdvdu } evaluated over the curve u+v+w=1u + v + w = 1.

I=aαbβcγpqr0101u01uvuαp1vβq1wγr1dwdvduI=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1-u }{ \int _{ 0 }^{ 1-u-v }{ { u }^{ \frac { \alpha }{ p } -1 }{ v }^{ \frac { \beta }{ q } -1 }{ w }^{ \frac { \gamma }{ r } -1 }dwdvdu } } }

I=aαbβcγpqrrγ0101uuαp1vβq1(1uv)γrdvduI=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \frac{r}{\gamma} \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1-u }{ { u }^{ \frac { \alpha }{ p } -1 }{ v }^{ \frac { \beta }{ q } -1 }{ (1-u-v) }^{ \frac { \gamma }{ r } }dvdu } }

Substitute v=(1u)tv = (1-u)t and dv=(1u)dtdv = (1 - u)dt.

I=aαbβcγpqrrγ01uαp1(1u)(βq+γr)01tβq1(1t)γrdt.I=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \frac { r }{ \gamma } \int _{ 0 }^{ 1 }{ { u }^{ \frac { \alpha }{ p } -1 }{ (1-u) }^{ \left( \frac { \beta }{ q } +\frac { \gamma }{ r } \right) }\int _{ 0 }^{ 1 }{ { t }^{ \frac { \beta }{ q } -1 }{ (1-t) }^{ \frac { \gamma }{ r } }dt } } .

Here we apply two beta functions

I=aαbβcγpqrrγΓ(αp)Γ(βq+γr+1)Γ(αp+βq+γr+1)Γ(βq)Γ(γr+1)Γ(βq+γr+1).I=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \frac { r }{ \gamma } \frac { \Gamma \left( \frac { \alpha }{ p } \right) \Gamma \left( \frac { \beta }{ q } +\frac { \gamma }{ r } +1 \right) }{ \Gamma \left( \frac { \alpha }{ p } +\frac { \beta }{ q } +\frac { \gamma }{ r } +1 \right) } \frac { \Gamma \left( \frac { \beta }{ q } \right) \Gamma \left( \frac { \gamma }{ r } +1 \right) }{ \Gamma \left( \frac { \beta }{ q } +\frac { \gamma }{ r } +1 \right) } .

Applying the gamma function property Γ(n+1)=nΓ(n)\Gamma(n+1) = n\Gamma(n), we arrive at the result: I=aαbβcγpqrΓ(αp)Γ(βq)Γ(γr)Γ(αp+βq+γr+1).I=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \frac { \Gamma \left( \frac { \alpha }{ p } \right) \Gamma \left( \frac { \beta }{ q } \right) \Gamma \left( \frac { \gamma }{ r } \right) }{ \Gamma \left( \frac { \alpha }{ p } +\frac { \beta }{ q } +\frac { \gamma }{ r } +1 \right) } .

Check out my other notes at Proof, Disproof, and Derivation

#Calculus #TripleIntegral #GammaFunction #Dirichlet

Note by Steven Zheng
6 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...