Problem 1. Let the maximum number of sections of the plane you can divide with lines be the function . Let the maximum number of sections of the plane you can divide with pairs of parallel lines be . Prove that for .
Problem 2. Let the maximum number of sections of the plane you can divide with lines be the function . Let the maximum number of sections of the plane you can divide with pairs of perpendicular lines be . Prove that for .
If any of these two problems are actually wrong, feel free to disprove it in the comments.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Problem 1.
Let f(n) denote the number of regions a plane is divided by n lines....
Clearly f(1)=2 , f(2)=4 and f(3)=7.
Now let us think about the recursive definition of the function f(n),when the nth line enters the [plane it intersect each of the previous n−1 lines at one point only and in process creates n new regions.Hence f(n)=f(n−1)+n
Solving this and putting f(1)=2, we get, f(n) =1+2n(n+1)
So clearly the number of regions a plane is divided by 2n lines is f(2n)=1+n(2n+1)=1+2n2+n.
Now let us the consider n pairs of parallel lines...
By inspection we can say that g(1)=3 and g(2)=9,
Now let us consider the nth pair of parallel lines being drawn...each line intersects the previous 2n−2 lines to form 2n−1 regions!!
So the recursive definition is g(n)=g(n−1)+2(2n−1)
Solving this recurrence relation we get g(n)=1+2n2. This relation's validity can easily be proved by induction.
Hence f(n)=1+2n2+n>1+2n2>g(n).
Log in to reply
I think perpendicular lines will also follow the same recursion as f(n) and hence the 2nd identity also correct....
Here you have no where mentioned whether the lines can coincide wholly with each other.......
Log in to reply
If I understand what you are saying, then yes, more than three lines can intersect at one place. However, that case will not give the maximum number of sections.