Divisibility test Note 1

The first of the divisibility tests.

Find and prove the divisibility test for 77. Furthermore, find the test for 7n7^n.

#NumberTheory #Divisibility #Sharky

Note by Sharky Kesa
6 years, 12 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

First of all we see that 1==1, 10==3, 100==2, 1000==6, 10000==4, and 100000==5 in mod 7, and the cycle repeats from here. Thus, if we want to check the divisibility of (A1 A2 A3 . . . . . . .An), an 'n' digit number, we can simply add the numbers from the right, multiplying them with 1, 3, 2, 6, 4, 5, and so on. For example, if we want to check whether 125783 is divisible by 7, we will find the sum 3(1)+8(3)+7(2)+5(6)+2(4)+1(5)=84, which is divisible by 7, thus 125783 is divisible by 7.

I also found out another divisibility test for 7, in which we subtract twice the units digit of a number from the remaining number till we get a single digit, and if this number is divisible, the whole number is divisible. This can be proved by the fact that 10(a)+b==10(a-2b) in mod 7, where 'b' is the units digit, and 'a' the others.

Satvik Golechha - 6 years, 12 months ago

Log in to reply

Nice, can you prove for 7n7^n? BTW, may you use LaTeX?

Sharky Kesa - 6 years, 11 months ago

For divisibility with 7 do the following : Suppose you have a no. abcde. Double the last digit i.e. 2e and subtract it from abcd (abcd - 2e), if this difference is divisible by 7, the no. is also. Keep on repeating the process with d,ç and b. You will get the answer.

Sudo Jarvis - 6 years, 11 months ago

Log in to reply

But can you prove it?

Sharky Kesa - 6 years, 11 months ago

xnxn1xn2x10(mod 7)10xnxn1xn2x2+x10(mod 7)50xnxn1xn2x2+5x10(mod 7)xnxn1xn2x2+5x10(mod 7)\overline { { x }_{ n }{ x }_{ n-1 }{ x }_{ n-2 }\dots { x }_{ 1 } } \equiv 0\quad \left( \text{mod 7} \right) \\ 10\overline { { x }_{ n }{ x }_{ n-1 }{ x }_{ n-2 }\dots { x }_{ 2 } } +{ x }_{ 1 }\equiv 0\quad \left( \text{mod 7} \right) \\ 50\overline { { x }_{ n }{ x }_{ n-1 }{ x }_{ n-2 }\dots { x }_{ 2 } } +5{ x }_{ 1 }\equiv 0\quad \left( \text{mod 7} \right) \\ \overline { { x }_{ n }{ x }_{ n-1 }{ x }_{ n-2 }\dots { x }_{ 2 } } +5{ x }_{ 1 }\equiv 0\quad \left( \text{mod 7} \right)

I haven't found out the test for 7n7^n yet but it can probably be found out in a similar manner.

Arulx Z - 5 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...