Let u(x) and v(x) satisfy the differential equations
\(\frac { du }{ dx } +p(x)u=f(x)\) and \(\frac { dv }{ dx } +p(x)v=g(x)\), where \(p(x), f(x)\) and \(g(x)\) are continuous functions. If \(u({ x }_{ 1 })>v({ x }_{ 1 })\) for some \({ x }_{ 1 }\) and \(f(x)>g(x)\) for all \(x>{ x }_{ 1 }\), prove that any point \((x,y)\), where \(x>{ x }_{ 1 }\) does not satisfy the equations \(y=u(x)\) and \(y=v(x)\).
(This question has been asked in the IIT 97 Second Exam)
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Did you get it eventually? All you have to show is that the two curves cannot intersect. From the linear differential equation, and the inequality, it should be straightforward.
@Rishabh Cool, can you please also solve this one if you have some time at your hand.