\[\begin{eqnarray} \sum _{ m=1 }^{ \infty }{ \sum _{ n=1 }^{ m }{ \frac { 1 }{ { 2 }^{ n+m } } } } & = \sum _{ n=1 }^{ \infty }{ \sum _{ m=n }^{ \infty }{ \frac { 1 }{ { 2 }^{ n } } \frac { 1 }{ { 2 }^{ m } } } } \\ \quad & = \sum _{ n=1 }^{ \infty }{ \sum _{ m=0 }^{ \infty }{ \frac { 1 }{ { 2 }^{ 2n } } \frac { 1 }{ { 2 }^{ m } } } } \\ \quad & = \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ 4^{ n } } \sum _{ m=0 }^{ \infty }{ \frac { 1 }{ { 2 }^{ m } } } } \\ \quad & = (\sum _{ m=0 }^{ \infty }{ \frac { 1 }{ { 2 }^{ m } } } )(\sum _{ n=1 }^{ \infty }{ \frac { 1 }{ 4^{ n } } } ) \\ \quad & = (2)(\frac { 1 }{ 3 } ) \\ \quad & = \boxed { \frac { 2 }{ 3 } } \end{eqnarray}\]
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.