Doubt! Please help!

Find the number of digits in 2222\large2^{2^{22}}?

#Algebra #NumberTheory #RMO

Note by Naitik Sanghavi
5 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

1262612

Dev Sharma - 5 years, 6 months ago

Log in to reply

Actually I got the answer but according to my book answer key I was wrong so....Thanks

naitik sanghavi - 5 years, 6 months ago

@Dev Sharma DevBut how will you find the number of digits without computing 222\large2^{22} if it is asked in exam?

naitik sanghavi - 5 years, 6 months ago

Log in to reply

U may assume the no. Of digits of a number be x. Let the number be a^b. So 10^(x-1) = a^b X-1 = blog(a) [log with base 10] X = blog(a) +1 For convenience, X = [blog(a)] +1 So 2^22 has [22log(2)] +1 digits.similarly following can be calculat ed

Aditya Narayan Sharma - 5 years, 6 months ago

Log in to reply

@Aditya Narayan Sharma How to apply here .here it will become 2^22 log(2) then we have to apply log again then do antilog.after doing this I got answer 447 .is it right??????

Anshul Sanghi - 5 years, 5 months ago

@Calvin Lin Please help me with this!

naitik sanghavi - 5 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...