Egyptian Informatics Olympiad 2009

Hanadi has N flower pots each with a unique flower. The pots are arranged along a line. One day she decided to change their order under the condition that no two pots that were originally next to each other remain next to each other. Find no of days she can continue this way :

For 5 pots there are 14 orders satisfying Hanadi’s condition, assuming the original order of pots was “ABCDE” then the 14 possible orders are:

ACEBD ADBEC BDACE BDAEC BECAD CADBE CAEBD CEADB CEBDA DACEB DBEAC DBECA EBDAC ECADB

#ComputerScience #Competitions

Note by Anurag Choudhary
7 years, 7 months ago

No vote yet
6 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Probably Catalan numbers, but that's just my first guess.

Ivan Stošić - 7 years, 7 months ago

principle of IEB,let the unrestricted cas e be N,that is n factorial,now by the principle,we knw N(A1 un A2 unA3....An)=N-n(1)+n(2).......

Nayan Pathak - 7 years, 7 months ago

Log in to reply

Answer would come from some kind of recurrence relation and for your information correct answer is is (N - 1)! - Σk! (k from 0 ko N-2)

Anurag Choudhary - 7 years, 7 months ago
×

Problem Loading...

Note Loading...

Set Loading...